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1Most of the results I will describe are joint with a large group of
collaborators: Jacob Carson, Valentina Harizanov, Karen Lange, Christina
Maher, Charles McCoy csc, Andrei Morozov, Sara Quinn, and John Wallbaum.
I will also mention some new work of McCoy and Wallbaum.
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Language of groups

The language of groups has

I a binary operation symbol for the group
operation—sometimes indicated just by concatenating,

I a unary operation symbol for inverse,

I a constant for the identity.

Note. The axioms for groups are universal.
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Definition of free group, etc.

Let G be a group.

I G is free if it is generated by a set B on which there are no
non-trivial relations.

I A basis for G is a set B with the features above.

I The rank of a free group G is the cardinality of a basis B.
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Names for free groups

I Fn is the free group of rank n

I F∞ is the free group of rank ℵ0.

Note: F1 is the familiar Abelian group Z. The other free groups
are non-Abelian.
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Locally free groups

Definition. A group is locally free if every finitely generated
subgroup is free.

Example: Let H be the subgroup of (Q,+) generated by 1
2k for

k ∈ ω. Then H is locally free but not free.

Theorem (Takahasi). A countable locally free group G is free iff
each finite tuple x is contained in a finitely generated G′ ⊆ G that
is a free factor of every finitely generated extension G′′ ⊆ G.
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Elementary first order theories

Question (Tarski). For m, n ≥ 2, are Fm and Fn elementarily
equivalent ?

Theorem (Sela). Yes.

Sela gave an elimination of quantifiers down to Boolean
combinations of Σ2 formulas. More recently, he showed that the
theory is stable. Results of Poizat and Pillay say that among stable
theories, it is complicated.
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Our goal is to describe the different free groups. The Scott
Isomorphism Theorem says that we can do it with Lω1,ω-sentences.
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Formulas of Lω1,ω

The Lω1,ω-formulas are infinitary first order formulas in which the
infinite disjunctions and conjunctions are countable.

Theorem (Scott). For any countable structure A for a countable
language L, there is an Lω1,ω-sentence whose countable models are
just the isomorphic copies of A.
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Classification of Lω1,ω-formulas

I ϕ(x) is Π0 and Σ0 if it is finitary quantifier-free,

I for α > 0,

I ϕ(x) is Σα if it is a countable disjunction of formulas
(∃u)ψ(x , u), where ψ is Πβ for some β < α,

I ϕ(x) is Πα if it is a countable conjunction of formulas
(∃u)ψ(x , u), where ψ is Σβ for some β < α.
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Computable infinitary formulas

We can describe free groups using “computable” infinitary
sentences.

The computable infinitary formulas are infinitary formulas in which
the infinite disjunctions and conjunctions are computably
enumerable.

We classify the computable infinitary formulas as computable Σα,
computable Πα.

To say that a particular description of a free group is optimal, we
use tools from computability.
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Index sets

Definition.

I A computable index for a structure A is a number e s.t. ϕe is
the characteristic function of the atomic diagram of A.

I For a structure A, the index set, denoted by I (A), is the set
of computable indices for structures isomorphic to A.

I For a class K of structures, the index set, denoted by I (K ), is
the set of computable indices for elements of K .

Thesis. For a structure, or class of structures closed under
isomorphism, the complexity of the index set matches the
complexity of an optimal description.
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Complexity within a larger set

Let Γ be a complexity class, such as Π0
3 or d-Σ0

2, and let A ⊆ B.

I A is Γ within B if there is some C ∈ Γ s.t. A = C ∩ B

I A is Γ-hard within B if for any set S ∈ Γ, there is a
computable function f : ω → B s.t. f (n) ∈ A iff n ∈ S

I A is m-complete Γ within B if A is Γ within B and A is Γ-hard
within B.

For a structure A in a class K that is closed under isomorphism,
we consider the complexity of I (A) within I (K ). If I (A) is Γ, or
Γ-hard, within I (K ), we may say simply that it is Γ, or Γ-hard
within K .
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Working within the class of free groups

Let FG be the class of free groups. Here are our results on the
index sets.

I I (F1) is m-complete Π0
1 within FG ,

I I (F2) is m-complete Π0
2 within FG ,

I for n > 2, I (Fn) is m-complete d-Σ0
2 within FG ,

I I (F∞) is m-complete Π0
3 within FG .

We are interested in describing free groups. When we describe a
group using a sentence of a certain complexity, we know that the
index set lies in the corresponding complexity class. When we
prove hardness, we know that our description is optimal.
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Describing F1 within FG

We describe F1 within FG by a (finitary) Π1 sentence saying that
the group is Abelian.

Proposition 1. I (F1) is m-complete Π0
1 within FG .

Proof: From our description, it follows that I (F1) is Π0
1 within FG .

For hardness, we show that for any Π0
1 set S , there is a uniformly

computable sequence (Cn)n∈ω s.t.

Cn ∼=
{
F1 if n ∈ S
F2 otherwise
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Describing F2 within FG

For each n ≥ 1, we can find a computable Π2 sentence ϕn saying
that for any (n + 1)-tuple of elements, there is an n-tuple that
generates it. We describe F2 within FG by the conjunction of ϕ2

and a finitary Σ1 sentence saying that the group is not Abelian.

Proposition 2. I (F2) is m-complete Π0
2 within FG .

Proof: From our description, it follows that I (F2) is Π0
2 within FG .

For hardness, we show that for any Π0
2 set S , there is a uniformly

computable sequence (Cn)n∈ω s.t.

Cn ∼=
{
F2 if n ∈ S
F3 otherwise
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Describing Fn, for n > 2, within FG

For n > 2, we describe Fn within FG by the sentence
ϕn & neg(ϕn−1).

Proposition 3. For n > 2, I (Fn) is m-complete d-Σ0
2 within FG .

Proof: From our description, it follows that I (Fn) is d-Σ0
2 within

FG . For hardness, we show that for any Σ0
2 sets S1 and S2, there is

a uniformly computable sequence (Cn)n∈ω s.t.

Cn ∼=


Fn−1 if n /∈ S1

Fn if n ∈ S1 & n /∈ S2

Fn+1 if n ∈ S1 ∩ S2
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Describing F∞ within FG

We describe F∞ within FG by the conjunction of the sentences
neg(ϕn). This is computable Π3.

Proposition 4. I (F∞) is m-complete Π0
3 within FG .

Proof: By our description, I (F∞) is Π0
3 within FG . For

completeness, recall that Cof = {n : Wn is cofinite}. We build a
uniformly computable sequence of free groups (Cn)n∈ω s.t.
Cn ∼= F∞ iff n /∈ Cof .
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Working within the class of all groups

Let G be the class of groups. Here are our results on the index sets.

I For n ≥ 1, I (Fn) is m-complete d-Σ0
2 within G .

I I (F∞) is m-complete Π0
4 within G .

Again, our goal is to describe the groups. To show that our
descriptions are optimal, we calculate the complexity of the index
sets. We need some results from group theory.
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Nielsen transformations

We begin with some old results, given in the book of Lyndon and
Schupp on combinatorial group theory.

Definition. A Nielsen transformation on a tuple (x1, . . . , xn) is the
result of finitely many steps of the following forms.

I replace xi by x−1
i ,

I replace xi and xj by xixj and xj ,

I replace xi and xj by xj and xi .

Theorem. If (b1, . . . , bn) is a basis for Fn, then the orbit of
(b1, . . . , bn) consists of the tuples obtained by applying Nielsen
transformations.
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Examples

Suppose a, b form a basis for F2. Then the following are also
bases, obtained by Nielsen transformations.

I ab, b

I ab, ab2

I abab2, ab2

I abab2, abab2ab2

I abab2abab2ab2, abab2ab2

We can continue. Note that the words that occur on the odd lines
are all distinct.
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Primitive tuples of words

Definition. Let w1(x), . . . ,wk(x) be a k-tuple of words on an
n-tuple of variables x , where k ≤ n. The tuple of words is primitive
if whenever the n-tuple x is a basis for Fn, the k-tuple
w1(x), . . . ,wk(x) is part of a basis.

Theorem. We can effectively decide which tuples of words are
primitive.

Sketch of proof: If k = n, we can perform an “N-reduction” to get
either an inessential variant of the tuple x , or an n-tuple that
includes the identity e. If k < n, then the k-tuple is primitive iff
there is an extension to a primitive n-tuple, where the length of
any added word is bounded by the sup of the lengths of the given
words.
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Describing F1 within G

We describe F1 within G by a computable d-Σ2 sentence saying

I the group is Abelian and torsion-free,

I there is a non-zero element not divisible by any prime,

I for any pair of elements, there is a single element that
generates both.
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Proof that description of F1 is optimal

Proposition 5. I (F1) is m-complete d-Σ0
2 within G .

Proof: By our description, I (F1) is d-Σ0
2. To show that I (F1) is

d-Σ0
2-hard within G , let S1,S2 be Σ0

2 sets. Let H be the subgroup
of (Q,+) generated by 1

2k for k ∈ ω. (locally free but not free).
We produce a uniformly computable sequence of Abelian groups
(Cn)n∈ω s.t.

Cn ∼=


H if n /∈ S1

Z if n ∈ S1 − S2

Z⊕ Z if n ∈ S1 ∩ S2
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Describing Fn, for n > 1, within G

We describe Fn by the conjunction of

I a computable Π2 sentence saying that each tuple is generated
by some n-tuple, and

I a computable Σ2 sentence saying that there is an n-tuple x ,
with no non-trivial relations, s.t. for any n-tuple y , x cannot
be expressed by an imprimitive tuple of words in y .
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Proof that description of Fn is optimal

Proposition 6. For n > 1, I (Fn) is m-complete d-Σ0
2 within G .

Proof: By our description, I (Fn) is d-Σ0
2 within G . For n > 2, the

fact that I (Fn) is d-Σ0
2 hard within FG implies that it is d-Σ0

2-hard
within G . For n = 2, we need a separate construction. The first
alternative is locally free but not free, and the second is F3.
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Describing F∞ within G

First, for each n, we have a computable Π2 formula γn(x) saying of
an n-tuple x that it is part of a basis—we say that for any larger
tuple y with no non-trivial relations, x is not expressed by an
imprimitive tuple of words on y .

Now, to describe F∞, we may say that there is some x1 that is
part of a basis, and for any tuple x that is part of a basis and any
y , there is an extension x ′ of x that is part of a basis and generates
y . This is computable Π4.

Proposition 7. I (F∞) is Π0
4.

The large group of co-authors, using only facts from Lyndon and
Schupp, could not show that I (F∞) is Π0

4-hard. Recently, McCoy
and Wallbaum have done this. Their result uses more group theory.
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Result of Bestvina-Feighn

Theorem (Bestvina and Feighn). Suppose G is the free group
generated by a, b, c . The word a2b2c3 is not primitive. However, it
satisfies all of the Π1 formulas true of a basis element.

In the earlier constructions, we destroyed basis elements, and we
did not re-instate them. The theorem of Bestvina-Feighn lets
McCoy and Wallbaum to re-instate basis elements.
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Hardness result of McCoy and Wallbaum

Proposition 8 (McCoy-Wallbaum. I (F∞) is Π0
4-hard.

Idea of Proof (details still being filled in): Let S be Π0
4. We want a

uniformly computable sequence (Cn)n∈ω s.t. Cn ∼= F∞ iff n ∈ S .
We have computable function f (n, x) s.t. n ∈ S iff
(∀x) f (n, x) ∈ Cof .

We define a uniformly computable sequence of groups Hn,x s.t. if
f (n, x) ∈ Cof , then Hn,x

∼= F∞, and if f (n, x) /∈ Cof , then Hn,x is
not free. We let Cn be the free product of Hn,x for x ∈ ω.
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Finding a basis

Proposition 9. If G is a computable copy of F∞, then G has a Π0
2

basis.

Proof: We may suppose that G has universe ω. We have
computable Π2 formulas describing the tuples that can be part of a
basis. Using these, we get a ∆0

3 basis. Using ∆0
2, we can guess the

∆0
3 basis, with guesses that are eventually correct on each initial

segment. For any pair of basis elements b1, b2, we use Nielsen
transformations to obtain infinitely many further pairs, with all
elements distinct. We can enumerate elements into the
complement of the basis, and if b1, b2 have been rejected and later
look correct, ∆0

2 can find an equivalent new pair to protect.
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Sharpness

The large group of co-authors could not show that Proposition 9 is
best possible. McCoy and Wallbaum have ideas for doing this,
using the result of Bestvina and Feighn.

Conjecture (McCoy-Wallbaum). There is a computable copy of
F∞ with no Π0

1 basis.

Proposition 10. Let G be a computable copy of F∞. If there is a
Σ0

2 basis, then there is a Π0
1 basis.
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Finitely generated groups

Let Fin be the class of all finitely generated groups.

Proposition 11. I (Fin ∩ FG ) is m-complete Σ0
3 within FG .

Proof: We may describe Fin ∩ FG within FG by taking the
disjunction of the sentences describing the various Fn. We get
hardness from the proof that I (F∞) is Π0

3-hard within FG .

Proposition 12. I (Fin) is m-complete Σ0
3 within G .

Proof: We have a computable Σ3 sentence saying that for some n,
there is an n-tuple x that generates the whole group. As above, we
get hardness from the earlier result.
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Locally free groups

Let LF be the class of locally free groups.

Proposition 13. I (LF ) is m-complete Π0
2 within G .

Proof: We have a computable Π2 sentence saying of a group

I it is torsion free
I for all n ≥ 1, for each (n + 1)-tuple y , if y has a non-trivial

relation, then there is an n-tuple x generating y .

For hardness, let S be a Π0
2 set. We construct a computable

sequence (Hn)n∈ω s.t.

Hn
∼=
{

Z if n ∈ S
Z⊕ Z otherwise
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Describing the class of free groups

Proposition 14. I (FG ) is Π0
4.

Proof: We describe FG by taking the disjunction of the
computable Π4 sentence describing F∞ and the computable Σ3

sentence describing the class of finitely generated free groups.

Julia Knight 34 Describing free groups



Background
Describing Fn and F∞ within the class of free groups

Describing Fn and F∞ within the class of groups
Bases for free groups

Describing classes of groups

Hardness result of McCoy-Wallbaum

The large group of co-authors could not prove the desired hardness
result. McCoy and Wallbaum’s proof of Proposition 8 does it.

Proposition 15 (McCoy-Wallbaum). I (FG ) is Π0
4-hard within G .
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