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Enumeration reducibility

Let {Wi}i∈ω, {Di}i∈ω be standard listings of the recursively
enumerable sets and the finite sets of numbers.

Definition.(Friedberg and Rogers, 1959) We say that Ψ : 2ω → 2ω

is an enumeration operator (or e-operator) iff for some r.e. set Wi

Ψ(B) = {x |(∃D)[〈x ,D〉 ∈Wi &D ⊆ B]}

for each B ⊆ ω.

If Ψ is defined by means of the r.e set Wi then we say that i is an
index of Ψ and write Ψ = Ψi .

Definition. For any sets A and B define A is enumeration
reducible to B, written A ≤e B, by A = Ψ(B) for some e-operator
Ψ.
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The enumeration jump

Definition. Given A ⊆ ω, set A+ = A⊕ (ω \ A).

Theorem. For any A,B ⊆ ω,

1 A is r.e. in B iff A ≤e B+.

2 A ≤T B iff A+ ≤e B+.

Definition.(Cooper, McEvoy) Given A ⊆ ω, let
EA = {〈i , x〉|x ∈ Ψi (A)}. Set Je(A) = E +

A .

The enumeration jump Je is monotone and agrees with the Turing
jump JT in the following sense:

Theorem. For any A ⊆ ω, JT (A)+ ≡e Je(A+).
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Given a set X of natural numbers, let J
(0)
e (X ) = X and

J
(n+1)
e (X ) = Je(J

(n)
e (X )).

Theorem. For all X and for all n, J
(n)
e (X +) ≡e (J

(n)
T (X ))+

uniformly in X and n.

Definition. A set A is called total iff A ≡e A+.

If A is total, then J
(n)
e (A) ≡e (J

(n)
T (A))+.

In particular, since ∅ is total, J
(n)
e (∅) ≡e (J

(n)
T (∅))+ uniformly in n.
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Enumeration reducibility and the relation ”r.e. in”

Theorem.(Selman, 1971) For any sets A and B,

A ≤e B ⇐⇒ (∀X ⊆ 2ω)(B is r.e. in X ⇒ A is r.e. in X ).

Theorem.(Case, 1974) For any sets A and B,

A ≤e J
(n)
e (∅)⊕ B ⇐⇒ (∀X ⊆ 2ω)(B is ΣX

n+1 ⇒ A is ΣX
n+1).

Question: Characterize for all k, n ∈ ω the relation

A ≤k
n B ⇐⇒ (∀X )(B ∈ Σn+1(X )⇒ A ∈ Σk+1(X )).
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Ash’s generalizations

In 1992 C. Ash defines two versions of positive reducibilities
between sequences of sets:

Let A = {Ak}k<ω and B = {Bk}k<ω be two sequences of sets.

Definition.

1 A ≤ B (A is non-uniformly reducible to B) iff

(∀X ⊆ 2ω)[(∀k)(Bk ∈ ΣX
k+1)⇒ (∀k)(Ak ∈ ΣX

k+1)].

2 A ≤ω B (A is uniformly reducible to B) iff

(∀X ⊆ 2ω)[(∀k)(Bk ∈ ΣX
k+1 uniformly in k)⇒

(∀k)(Ak ∈ ΣX
k+1 uniformly in k)].

Ivan N. Soskov The ω-enumeration degrees



Generalizations of the enumeration reducibility
The semilattice of the omega-enumeration degrees

The jump operator
Global definability and automorphisms

The local theory

Ash’s generalizations in terms of e-reducibility

Definition. Given a sequence A = {Ak}k<ω of sets of natural
numbers, define the jump sequence P(A) = {Pk(A)}k<ω by
means of recursion on k :

1 P0(A) = A0;

2 Pk+1(A) = Je(Pk(A))⊕ Ak+1.

Example. Let A ⊆ ω. Consider the sequence
A ↑ ω = {A, ∅, . . . , ∅, . . . }. Then

Pk(A ↑ ω) ≡e J
(k)
e (A) uniformly in k.
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Theorem. Let A and B be sequences of sets.

1 A ≤ B ⇐⇒ (∀k)(Ak ≤e Pk(B)).

2 A ≤ω B ⇐⇒ (∀k)(Ak ≤e Pk(B) uniformly in k).

Definition. Say that A ≤e B iff there exists a recursive function f
such that

(∀k)(Ak = Ψf (k)(Bk)).

Then A ≤ω B ⇐⇒ A ≤e P(B).
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Properties of the omega-reducibility

Let A = {Ak}k<ω and B = {Bk}k<ω be sequences of sets of
natural numbers. Then A ≡ω B iff A ≤ω B and B ≤ω A.
Similarly, A ≡e B iff A ≤e B and B ≤e A.

1 A ≤e B ⇒ A ≤ω B.
2 P(P(A)) ≡e P(A).
3 A ≡ω P(A).
4 ”≡ω” and ”≡e” are equivalence relations.

Definition. Let A⊕ B = {Ak ⊕ Bk}k<ω

1 A ≤ω A⊕ B and B ≤ω A⊕ B.
2 If A ≤ω C and B ≤ω C then A⊕ B ≤ω C.
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The enumeration degrees

Definition. Given a set A, let de(A) = {B ⊆ ω|A ≡e B}.
Let de(A) ≤e de(B) ⇐⇒ A ≤e B.

Denote by De the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0e , where
de(A) ∨ de(B) = de(A⊕ B) and 0e = {W |W is r.e.}.

The Rogers embedding. Define ι : DT → De by
ι(dT (A)) = de(A+). Then ι is a proper embedding of DT into De .
The enumeration degrees in the range of ι are exactly the total
ones.

Let de(A)′ = de(Je(A)). The jump is always total and agrees with
the Turing jump under the embedding ι.

Ivan N. Soskov The ω-enumeration degrees



Generalizations of the enumeration reducibility
The semilattice of the omega-enumeration degrees

The jump operator
Global definability and automorphisms

The local theory

The enumeration degrees

Definition. Given a set A, let de(A) = {B ⊆ ω|A ≡e B}.
Let de(A) ≤e de(B) ⇐⇒ A ≤e B.

Denote by De the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0e , where
de(A) ∨ de(B) = de(A⊕ B) and 0e = {W |W is r.e.}.

The Rogers embedding. Define ι : DT → De by
ι(dT (A)) = de(A+). Then ι is a proper embedding of DT into De .
The enumeration degrees in the range of ι are exactly the total
ones.

Let de(A)′ = de(Je(A)). The jump is always total and agrees with
the Turing jump under the embedding ι.

Ivan N. Soskov The ω-enumeration degrees



Generalizations of the enumeration reducibility
The semilattice of the omega-enumeration degrees

The jump operator
Global definability and automorphisms

The local theory

The enumeration degrees

Definition. Given a set A, let de(A) = {B ⊆ ω|A ≡e B}.
Let de(A) ≤e de(B) ⇐⇒ A ≤e B.

Denote by De the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0e , where
de(A) ∨ de(B) = de(A⊕ B) and 0e = {W |W is r.e.}.

The Rogers embedding. Define ι : DT → De by
ι(dT (A)) = de(A+). Then ι is a proper embedding of DT into De .
The enumeration degrees in the range of ι are exactly the total
ones.

Let de(A)′ = de(Je(A)). The jump is always total and agrees with
the Turing jump under the embedding ι.

Ivan N. Soskov The ω-enumeration degrees



Generalizations of the enumeration reducibility
The semilattice of the omega-enumeration degrees

The jump operator
Global definability and automorphisms

The local theory

Classes of Turing degrees

Definition. Given a set A, let EA = {dT (X )| A is r.e. in X}.

By Selman’s Theorem:

Theorem. For any sets A and B,

1 A ≤e B ⇐⇒ EB ⊆ EA.

2 A ≡e B ⇐⇒ EA = EB .

The mapping de(A)→ EA is an embedding of the enumeration
degrees into the Muchnik degrees.

The set EA has a least element iff the degree de(A) is total. If a
least element exists then it is equal to the Turing degree
ι−1(de(A)) of A.
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Jump classes

Theorem.(Jump inversion) For any set A there exists a total set X
such that A ≤e X and Je(A) ≡e Je(X ) ≡e (JT (X ))+.

Corollary. For any set A, EJe(A) = {a′|a ∈ EA}.

Corollary. For any set A the set {a′|a ∈ EA} has a least element
which is equal to ι−1(de(Je(A))).

By Coles, Downey and Slaman, the degree spectra of the torsion
free Abelian groups of rank one are exactly the sets EA. Hence
every such group has a jump degree.
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The ω-enumeration degrees

Denote by S the set of all sequences of sets of natural numbers.

Definition. Given a sequence A, let dω(A) = {B ∈ S|A ≡ω B}.
Let dω(A) ≤ω dω(B) ⇐⇒ A ≤ω B.

Denote by Dω the partial ordering of the ω-enumeration degrees.

Dω is an upper semi-lattice with least element 0ω, where

dω(A) ∨ dω(B) = dω(A⊕ B) and 0ω = {A|A ≤e {J(n)
e (∅)}n<ω}.

Recall that if A ⊆ ω then by A ↑ ω we denote the sequence
{A, ∅, . . . }. For A,B ⊆ ω, A ≤e B ⇐⇒ A ↑ ω ≤ω B ↑ ω.
Hence the mapping κ : De → Dω, defined by
κ(de(A)) = dω(A ↑ ω) is an embedding of De into Dω.
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Jump classes

Definition. Given an element A = {Ak}k<ω of S define the jump
class JA of A by

JA = {dT (X )|(∀k)(Ak is r.e. in J
(k)
T (X ) uniformly in k)}

= {dT (X )|(∀k)(Ak ∈ ΣX
k+1 uniformly in k)}.

From the definition of the ω-reducibility we get directly:

Theorem. Let A,B ∈ S. Then

1 A ≤ω B ⇐⇒ JB ⊆ JA.

2 A ≡ω B ⇐⇒ JA = JB.
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Notice also that JA = {x ∈ DT |dω(A) ≤ω κ(ι(x))}.

Theorem. For any ω-enumeration degrees a and b,

1 a ≤ω b ⇐⇒ (∀x ∈ DT )(b ≤ω κ(ι(x))⇒ a ≤ω κ(ι(x))).

2 a ≤ω b ⇐⇒ (∀x ∈ De)(b ≤ω κ(x)⇒ a ≤ω κ(x)).

Let D1 = {κ(x)|x ∈ De}.

Corollary. The set D1 is a base of the automorphisms of Dω.
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0′

De

Dω

DT

0
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The jump operator

Definition. Let A′ = {Pk+1(A)}k<ω.

For example, ∅′ω ≡e {∅(k+1)}k<ω. Moreover for every A ⊆ N,
(A ↑ ω)′ = {A(k+1)}k<ω and hence (A ↑ ω)′ ≡ω A′ ↑ ω.

Theorem. JA′ = {a′ : a ∈ JA}.

Corollary. A ≤ω B ⇒ A′ ≤ω B′.

The jump operator on Dω agrees with the enumeration jump and
with the Turing jump:

(∀a ∈ De)[κ(a′) = κ(a)′].

(∀a ∈ DT )[ι(κ(a′)) = ι(κ(a))′]
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Jump inversion

Set A(0) = A and A(n+1) = (A(n))′. For every n,
A(n) ≡e {Pn+k(A)}k<ω.

Definition. Given n ∈ N and A ∈ S let In(A) = {Bk}k<ω, where
Bk = ∅ if k < n and Bk = Pk−n(A) if n ≤ k .

So In(A) = {∅, . . . , ∅︸ ︷︷ ︸
n

,P0(A),P1(A), . . . }

Theorem. Let ∅(n)
ω ≤ω A. Then

1 In(A)(n) ≡ω A.

2 If B(n) ≡ω A, then In(A) ≤ω B.
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Relativized jump inversion

Fix A = {Ak}k<ω and set

I n
A(B) = {A0, . . . ,An−1,P0(B),P1(B), . . . }.

Theorem. Let A(n) ≤ω B. Then

1 I n
A(B)(n) ≡ω B.

2 If A ≤ω C and C(n) ≡ω B, then I n
A(B) ≤ω C.

Proposition. Let n ≥ 0. If A1 ≤ω A2 and B1 ≤ω B2 then

I n
A1

(B1) ≤ω I n
A2

(B2)

.
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The jump operator on the ω-degrees

Definition. For n ≥ 0, a = dω(A) and b = dω(B), let
I n
a (b) = dω(I n

A(B)).

Theorem. For every a,b ∈ Dω, if a(n) ≤ω b then I n
a (b) is the least

element of the set {x ∈ Dω|a ≤ω x & x(n) = b}.

Theorem. For every a ∈ Dω and n ≥ 0,

{x(n) : a ≤ω x ≤ω a′} = {y : a(n) ≤ω y ≤ω a(n+1)}.

Theorem. Let a ∈ Dω and n ≥ 0. Then

Dω[a(n), a(n+1)] ' Dω[a, I n
a (a(n+1))].
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Minimal pairs

Definition. The degrees a,b are a minimal pair above x iff

1 x <ω a and x <ω b and

2 If y ≤ω a and y ≤ω b then y ≤ω x.

Theorem.

1 For any x ∈ Dω there exists a minimal pair above x of
enumeration degrees.

2 If a,b is a minimal pair above x then for all n,

a(n) ∧ b(n) = x(n).
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Exact pairs

Let I be an ideal of ω-enumeration degrees.

Definition. The degrees a,b are an exact pair of I iff

1 (∀x ∈ I )(x <ω a & x <ω b) and

2 If y ≤ω a and y ≤ω b then y ∈ I .

Definition. Given an ideal I , let I (n) be the least ideal containing
the nth jumps of the elements of I .

Theorem. Let I be a countable ideal. Then

1 If I has an exact pair, then it has an exact pair of e-degrees.

2 If a,b is an exact pair of a non-principal ideal I , then for all n,
a(n),b(n) is an exact pair of I (n).
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Not every countable ideal has an exact pair

Example. Consider the ideal I generated by the sequence
0ω, 0′ω, . . . . Let a = dω(A ↑ ω) be an upper bound of I . By
Enderton and Putnam Theorem, ∅(ω) ≤e A′′′ and hence

0(ω)
ω = dω(∅(ω) ↑ ω) ≤ω a′′′.

Assume that I has an exact pair. Then it has an exact pair a,b of

enumeration degrees and hence 0
(ω)
ω ≤ω a′′′ and 0

(ω)
ω ≤ω b′′′.

On the other hand a′′′ and b′′′ is an exact pair of I ′′′ = I . A
contradiction.
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Definability of the enumeration degrees

Denote by Dω
′ the structure (Dω; 0ω;≤ω;′ ) of the ω-enumeration

degrees augmented by the jump operation.

Definition. Given a, x ∈ Dω, let

Ia = {I 1
a (x) : a′ ≤ω x}.

Notice that

z ∈ Ia ⇐⇒ a ≤ω z & (∀y)(a ≤ω y & y′ = z′ ⇒ z ≤ω y).

Hence there exists a fist order formula Φ with two free variables
such that

Dω
′ |= Φ(z, a) ⇐⇒ z ∈ Ia.
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Proposition. Let a = dω(A) and b = dω(B). Then

Ia ⊆ Ib ⇐⇒ b ≤ω a & A0 ≡e B0.

Proposition. For all a ∈ Dω,

a ∈ De ⇐⇒ (∀b)(Ia ⊆ Ib ⇒ Ia = Ib).

Corollary. De is first order definable in Dω
′.

From the properties of the minimal pairs:

Theorem. De is definable in Dω iff the jump is definable in Dω.
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Slaman-Woodin Coding lemma

Theorem. (Slaman-Woodin Coding Lemma) Every countable
relation on the enumeration degrees is uniformly first order
definable from parameters in De .

Consider a countable set R of ω-enumeration degrees. Let a be an
enumeration degree which bounds all elements of R. For any
element x of R one can construct an enumeration degree bx such
that a,bx is a minimal pair over x. Let Re = {bx : x ∈ R}. By the
definability of De and the Coding lemma, Re is first order
definable in Dω

′. Clearly

x ∈ R ⇐⇒ (∃b ∈ Re)(x = a ∧ b).

Ivan N. Soskov The ω-enumeration degrees



Generalizations of the enumeration reducibility
The semilattice of the omega-enumeration degrees

The jump operator
Global definability and automorphisms

The local theory

Slaman-Woodin Coding lemma

Theorem. (Slaman-Woodin Coding Lemma) Every countable
relation on the enumeration degrees is uniformly first order
definable from parameters in De .

Consider a countable set R of ω-enumeration degrees. Let a be an
enumeration degree which bounds all elements of R. For any
element x of R one can construct an enumeration degree bx such
that a,bx is a minimal pair over x. Let Re = {bx : x ∈ R}. By the
definability of De and the Coding lemma, Re is first order
definable in Dω

′. Clearly

x ∈ R ⇐⇒ (∃b ∈ Re)(x = a ∧ b).

Ivan N. Soskov The ω-enumeration degrees



Generalizations of the enumeration reducibility
The semilattice of the omega-enumeration degrees

The jump operator
Global definability and automorphisms

The local theory

Theorem. Every countable relation on the ω-enumeration degrees
is uniformly first order definable in Dω

′ from parameters in De .

Corollary. The first order theory of Dω
′ is recursively isomorphic

to second order arithmetic.
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The automorphisms of Dω ′

Recall that De is a base of the automorphisms of Dω and hence of
the automorphisms of Dω

′. By the definability of De :

Theorem. Every (nontrivial) automorphism of Dω
′ induces a

(nontrivial) automorphism of De .

In the reverse direction we use a version of the J. Richter’s
Theorem about automorphisms of DT

′:

Theorem. Every automorphism of De
′ is the identity on the cone

above 0
(4)
e .
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Now consider an automorphism ϕ of De
′. Given a sequence A let

Je
A = {x ∈ De : dω(A) ≤ω x}.

Clearly A ≡ω B ⇐⇒ Je
A = Je

B. Hence Je
A = Je

P(A).

Notice that for every sequence A, if n ≥ 4 then

ϕ(de(Pn(A))) = de(Pn(A))

Given a sequence A, construct the sequence B so that
B0 ∈ ϕ(de(A0)), . . . ,B3 ∈ ϕ(de(A3)) and for n ≥ 4, Bn = Pn(A).

Lemma. Je
B = {ϕ(x)|x ∈ Je

A}.

Let Φ(dω(A)) = dω(B), where B is constructed as above.
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Theorem. The mapping Φ is well defined and has the following
properties:

1 (∀x ∈ De)(Φ(x) = ϕ(x)).

2 Φ is an automorphism of Dω
′.

Denote by Aut(De
′) and Aut(Dω

′) respectively the group of the
automorphisms of De

′ and Dω
′.

For ϕ ∈ Aut(De
′) let Λ(ϕ) = Φ, where Φ is defined as above.

Theorem. Λ is an isomorphism from Aut(De
′) to Aut(Dω

′).

By a result of Kalimullin the jump is first order definable in De .

Theorem. The groups of the automorphisms of De and Dω
′ are

isomorphic.
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Definition.(Lachlan and Shore) A recursive sequence of finite sets
{Bs} is a good approximation of the set B if it satisfies the
following two conditions:

(G1) (∀n)(∃s)(B � n ⊆ Bs ⊆ B).

(G2) (∀n)(∃s)(∀t ≥ s)(Bt ⊆ B ⇒ B � n ⊆ Bt).

The numbers s s.t. Bs ⊆ B are called good stages of the
approximation Bs .

Definition. Let B = {Bk}k<ω be a sequence of sets of natural
numbers. A sequence {Bs

k} of finite sets recursive in k and s is a
good approximation of B if the following conditions are satisfied:

(i) For all k, Bs
k is a good approximation of Bk .

(ii) If r ≤ k then the good stages of Bs
k are good stages of Bs

r .
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Density

Theorem. Every ω-enumeration degree below 0′ω contains a
sequence A which has a good approximation.

Theorem. The partial ordering of the ω-enumeration degrees
below 0′ω is dense.

Theorem. There is no minimal ω-enumeration degree
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The degrees on

Definition. Given n ≥ 1, set on = I n
0ω

(0ω
(n+1)).

For n ≥ 1, on = dω(∅, . . . , ∅︸ ︷︷ ︸
n

, ∅(n+1), ∅(n+2), . . . ). Hence

(∀n ≥ 1)(on > on+1).

Theorem. Dω[o1, 0
′] ∼= De [0e, 0e

′].

Theorem. For every n ≥ 1, Dω[on+1, on] ∼= De [0e
(n), 0e

(n+1)].

Theorem. For every n ≥ 1, Dω[0, on] ∼= Dω[0(n), 0(n+1)].
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0′

o1

on

De

0

o2

∼= De [0′e, 0
′′
e ]

∼= De [0e, 0′e]

∼= Dω[0′, 0′′]
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The almost zero elements

Definition. A degree a is almost zero (a.z.) if (∀n)(a <ω on).

Theorem. A degree a < 0′ω is a.z. iff there exists A ∈ a s.t.
(∀n)(An ≤e Jn

e (∅)).

There exist a.z. elements below 0′ω which are not equal to 0ω.

Corollary.

1 The a.z. elements below 0′ω form an ideal.

2 For every n and every a.z. degree a, the least solution of the
equation x (n) = a(n) is equal to a.

3 If a 6= 0ω is a.z. then (∀n)(0
(n)
ω <ω a(n) <ω 0

(n+1)
ω ).
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The classes H and L

Definition. Let n ≥ 1. An ω-enumeration degree a ≤ 0ω
′ is high n

if a(n) = 0ω
(n+1). The degree a is low n if a(n) = 0ω

(n).

Denote by Hn the set of all high n degrees and by Ln set of all low
n degrees. Set

H =
⋃
n≥1

Hn; L =
⋃
n≥1

Ln and I = {a ≤ω 0ω
′ : a 6∈ (H ∪ L)}.

Theorem. Let a ≤ω 0′. Then

1 a ∈ H ⇐⇒ (∀a.z . b)(b ≤ω a);

2 a ∈ L ⇐⇒ (∀a.z . b)(b ≤ω a⇒ b = 0ω).
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on

H
H

a.z

L L

I I

De

0

H
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Embedding partial orderings

Theorem. Let a < b ≤ 0′ω. Then every countable partial ordering
can be embedded in Dω[a,b].

Definition. The ω-enumeration degrees a and b are a Kalimullin
pair over c iff (∀x ≤ 0′ω)[(a ∨ c ∨ x) ∧ (b ∨ c ∨ x) = c ∨ x].

Theorem. There exists a family Ai of sequences uniformly below
∅′ω such that for all i , dω(Ai ) is a.z. and for any r.e. sets U and V ,
dω(

⊕
i∈U Ai ) and dω(

⊕
i∈V Ai ) is a Kalimullin pair over

dω(
⊕

i∈U∩V Ai ).

Corollary. The lattice E of the r.e. sets is embeddable in the a.z.
degrees preserving the least element.
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Local definability

Theorem. For every n ≥ 1, {on} is first order definable in
Dω[0ω, 0′ω].

Notice that if a ≤ω 0ω
′ then a ∈ Hn ⇐⇒ on ≤ω a and

a ∈ Ln ⇐⇒ on ∧ a = 0ω.

Corollary.

1 For every n, the classes Hn and Ln are first order definable in
Dω[0ω, 0′ω].

2 The Σ2 enumeration degrees are first order definable in
Dω[0ω, 0′ω].

3 There exists an interpretation of True Arithmetic in
Dω[0ω, 0′ω].
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Thank you!
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