The ω -enumeration degrees

Ivan N. Soskov

Faculty of Mathematics and Computer Science Sofia University

joint work¹ with H. Ganchev and M. Soskova

Enumeration reducibility

Let $\{W_i\}_{i \in \omega}, \{D_i\}_{i \in \omega}$ be standard listings of the recursively enumerable sets and the finite sets of numbers.

Definition.(Friedberg and Rogers, 1959) We say that $\Psi : 2^{\omega} \rightarrow 2^{\omega}$ is an *enumeration operator* (or e-operator) iff for some r.e. set W_i

 $\Psi(B) = \{x | (\exists D) [\langle x, D \rangle \in W_i \& D \subseteq \mathfrak{B}] \}$

for each $B \subseteq \omega$.

If Ψ is defined by means of the r.e set W_i then we say that *i* is an index of Ψ and write $\Psi = \Psi_i$.

Definition. For any sets *A* and *B* define *A* is *enumeration* reducible to *B*, written $A \leq_e B$, by $A = \Psi(B)$ for some e-operator Ψ .

The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$, **a** A is r.e. in B iff $A \leq_e B^+$. **a** $A \leq_T B$ iff $A^+ \leq_e B^+$.

Definition.(Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{ \langle i, x \rangle | x \in \Psi_i(A) \}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

The enumeration jump

Definition. Given $A \subseteq \omega$, set $A^+ = A \oplus (\omega \setminus A)$.

Theorem. For any $A, B \subseteq \omega$, **a** A is r.e. in B iff $A \leq_e B^+$. **a** $A \leq_T B$ iff $A^+ \leq_e B^+$.

Definition.(Cooper, McEvoy) Given $A \subseteq \omega$, let $E_A = \{ \langle i, x \rangle | x \in \Psi_i(A) \}$. Set $J_e(A) = E_A^+$.

The enumeration jump J_e is monotone and agrees with the Turing jump J_T in the following sense:

Theorem. For any $A \subseteq \omega$, $J_T(A)^+ \equiv_e J_e(A^+)$.

Given a set X of natural numbers, let $J_e^{(0)}(X) = X$ and $J_e^{(n+1)}(X) = J_e(J_e^{(n)}(X))$.

Theorem. For all X and for all n, $J_e^{(n)}(X^+) \equiv_e (J_T^{(n)}(X))^+$ uniformly in X and n.

Definition. A set A is called *total* iff $A \equiv_e A^+$.

If A is total, then $J_e^{(n)}(A) \equiv_e (J_T^{(n)}(A))^+$. In particular, since \emptyset is total, $J_e^{(n)}(\emptyset) \equiv_e (J_T^{(n)}(\emptyset))^+$ uniformly in n.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Enumeration reducibility and the relation "r.e. in"

Theorem.(Selman, 1971) For any sets A and B,

 $A \leq_e B \iff (\forall X \subseteq 2^{\omega})(B \text{ is r.e. in } X \Rightarrow A \text{ is r.e. in } X).$

Theorem.(*Case*, 1974) For any sets A and B,

$$A \leq_e J_e^{(n)}(\emptyset) \oplus B \iff (\forall X \subseteq 2^{\omega})(B \text{ is } \Sigma_{n+1}^X \Rightarrow A \text{ is } \Sigma_{n+1}^X).$$

Question: Characterize for all $k, n \in \omega$ the relation

 $A \leq_n^k B \iff (\forall X)(B \in \Sigma_{n+1}(X) \Rightarrow A \in \Sigma_{k+1}(X)).$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Enumeration reducibility and the relation "r.e. in"

Theorem.(Selman, 1971) For any sets A and B,

 $A \leq_{e} B \iff (\forall X \subseteq 2^{\omega})(B \text{ is r.e. in } X \Rightarrow A \text{ is r.e. in } X).$

Theorem.(Case, 1974) For any sets A and B,

$$A \leq_e J_e^{(n)}(\emptyset) \oplus B \iff (\forall X \subseteq 2^{\omega})(B \text{ is } \Sigma_{n+1}^X \Rightarrow A \text{ is } \Sigma_{n+1}^X).$$

Question: Characterize for all $k, n \in \omega$ the relation

$$A \leq_n^k B \iff (\forall X)(B \in \Sigma_{n+1}(X) \Rightarrow A \in \Sigma_{k+1}(X)).$$

Ash's generalizations

In 1992 C. Ash defines two versions of positive reducibilities between sequences of sets:

Let $\mathcal{A} = \{A_k\}_{k < \omega}$ and $\mathcal{B} = \{B_k\}_{k < \omega}$ be two sequences of sets.

Definition.

$$(orall X \subseteq 2^\omega)[(orall k)(B_k \in \Sigma_{k+1}^X) \Rightarrow (orall k)(A_k \in \Sigma_{k+1}^X)].$$

2 $\mathcal{A} \leq_{\omega} \mathcal{B}$ (\mathcal{A} is *uniformly* reducible to \mathcal{B}) iff

$$(orall X \subseteq 2^{\omega})[(orall k)(B_k \in \Sigma_{k+1}^X ext{ uniformly in } k) \Rightarrow (orall k)(A_k \in \Sigma_{k+1}^X ext{ uniformly in } k)].$$

Ash's generalizations in terms of e-reducibility

Definition. Given a sequence $\mathcal{A} = \{A_k\}_{k < \omega}$ of sets of natural numbers, define the *jump sequence* $\mathcal{P}(\mathcal{A}) = \{\mathcal{P}_k(\mathcal{A})\}_{k < \omega}$ by means of recursion on k:

$$P_0(\mathcal{A}) = A_0;$$

Example. Let $A \subseteq \omega$. Consider the sequence $A \uparrow \omega = \{A, \emptyset, \dots, \emptyset, \dots\}$. Then

$$\mathcal{P}_k(A \uparrow \omega) \equiv_e J_e^{(k)}(A)$$
 uniformly in k.

Ash's generalizations in terms of e-reducibility

Definition. Given a sequence $\mathcal{A} = \{A_k\}_{k < \omega}$ of sets of natural numbers, define the *jump sequence* $\mathcal{P}(\mathcal{A}) = \{\mathcal{P}_k(\mathcal{A})\}_{k < \omega}$ by means of recursion on k:

$$P_0(\mathcal{A}) = A_0;$$

Example. Let $A \subseteq \omega$. Consider the sequence $A \uparrow \omega = \{A, \emptyset, \dots, \emptyset, \dots\}$. Then

$$\mathcal{P}_k(A \uparrow \omega) \equiv_e J_e^{(k)}(A)$$
 uniformly in k.

Theorem. Let \mathcal{A} and \mathcal{B} be sequences of sets.

Definition. Say that $A \leq_e B$ iff there exists a recursive function f such that

$$(\forall k)(A_k = \Psi_{f(k)}(B_k)).$$

Then $\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B}).$

▲ 同 ▶ → 三 ▶

Theorem. Let \mathcal{A} and \mathcal{B} be sequences of sets.

Definition. Say that $\mathcal{A} \leq_{e} \mathcal{B}$ iff there exists a recursive function f such that

$$(\forall k)(A_k = \Psi_{f(k)}(B_k)).$$

Then $\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{A} \leq_{e} \mathcal{P}(\mathcal{B}).$

< ロ > < 同 > < 三 > <

Properties of the omega-reducibility

Let $\mathcal{A} = \{A_k\}_{k < \omega}$ and $\mathcal{B} = \{B_k\}_{k < \omega}$ be sequences of sets of natural numbers. Then $\mathcal{A} \equiv_{\omega} \mathcal{B}$ iff $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$. Similarly, $\mathcal{A} \equiv_e \mathcal{B}$ iff $\mathcal{A} \leq_e \mathcal{B}$ and $\mathcal{B} \leq_e \mathcal{A}$.

$$P(\mathcal{P}(\mathcal{A})) \equiv_{e} \mathcal{P}(\mathcal{A}).$$

() " \equiv_{ω} " and " \equiv_{e} " are equivalence relations.

Definition. Let $\mathcal{A} \oplus \mathcal{B} = \{A_k \oplus B_k\}_{k < \omega}$

Properties of the omega-reducibility

Let $\mathcal{A} = \{A_k\}_{k < \omega}$ and $\mathcal{B} = \{B_k\}_{k < \omega}$ be sequences of sets of natural numbers. Then $\mathcal{A} \equiv_{\omega} \mathcal{B}$ iff $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$. Similarly, $\mathcal{A} \equiv_e \mathcal{B}$ iff $\mathcal{A} \leq_e \mathcal{B}$ and $\mathcal{B} \leq_e \mathcal{A}$.

Definition. Let $\mathcal{A} \oplus \mathcal{B} = \{A_k \oplus B_k\}_{k < \omega}$

A \$\leq_{\omega}\$ \$\mathcal{A} \opega \mathcal{B}\$ and \$\mathcal{B}\$ \$\leq_{\omega}\$ \$\mathcal{A} \opega \mathcal{B}\$.
If \$\mathcal{A}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ and \$\mathcal{B}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ then \$\mathcal{A} \opega \mathcal{B}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ \$\leq_{\omega}\$ \$\leq_{\omega}\$ \$\leq_{\omega}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ \$\leq_{\omega}\$ \$\mathcal{B}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ \$\leq_{\omega}\$ \$\leq_{\omega}\$ \$\leq_{\omega}\$ \$\mathcal{C}\$ \$\leq_{\omega}\$ \$\leq_{\ome

Properties of the omega-reducibility

Let $\mathcal{A} = \{A_k\}_{k < \omega}$ and $\mathcal{B} = \{B_k\}_{k < \omega}$ be sequences of sets of natural numbers. Then $\mathcal{A} \equiv_{\omega} \mathcal{B}$ iff $\mathcal{A} \leq_{\omega} \mathcal{B}$ and $\mathcal{B} \leq_{\omega} \mathcal{A}$. Similarly, $\mathcal{A} \equiv_e \mathcal{B}$ iff $\mathcal{A} \leq_e \mathcal{B}$ and $\mathcal{B} \leq_e \mathcal{A}$.

Definition. Let $\mathcal{A} \oplus \mathcal{B} = \{A_k \oplus B_k\}_{k < \omega}$

1
$$\mathcal{A} \leq_{\omega} \mathcal{A} \oplus \mathcal{B}$$
 and $\mathcal{B} \leq_{\omega} \mathcal{A} \oplus \mathcal{B}$.
2 If $\mathcal{A} \leq_{\omega} \mathcal{C}$ and $\mathcal{B} \leq_{\omega} \mathcal{C}$ then $\mathcal{A} \oplus \mathcal{B} \leq_{\omega} \mathcal{C}$.

A B > A B >

The enumeration degrees

Definition. Given a set A, let $d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$. Let $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

Denote by \mathcal{D}_e the partial ordering of the enumeration degrees.

 \mathcal{D}_e is an upper semi-lattice with least element $\mathbf{0}_e$, where $d_e(A) \lor d_e(B) = d_e(A \oplus B)$ and $\mathbf{0}_e = \{W|W \text{ is r.e.}\}.$

The Rogers embedding. Define $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are exactly the total ones.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

The enumeration degrees

Definition. Given a set A, let
$$d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$$
.
Let $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

Denote by \mathcal{D}_e the partial ordering of the enumeration degrees.

 \mathcal{D}_e is an upper semi-lattice with least element $\mathbf{0}_e$, where $d_e(A) \lor d_e(B) = d_e(A \oplus B)$ and $\mathbf{0}_e = \{W|W \text{ is r.e.}\}.$

The Rogers embedding. Define $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are exactly the total ones.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

The enumeration degrees

Definition. Given a set A, let
$$d_e(A) = \{B \subseteq \omega | A \equiv_e B\}$$
.
Let $d_e(A) \leq_e d_e(B) \iff A \leq_e B$.

Denote by \mathcal{D}_e the partial ordering of the enumeration degrees.

 \mathcal{D}_e is an upper semi-lattice with least element $\mathbf{0}_e$, where $d_e(A) \lor d_e(B) = d_e(A \oplus B)$ and $\mathbf{0}_e = \{W|W \text{ is r.e.}\}.$

The Rogers embedding. Define $\iota : \mathcal{D}_T \to \mathcal{D}_e$ by $\iota(d_T(A)) = d_e(A^+)$. Then ι is a proper embedding of \mathcal{D}_T into \mathcal{D}_e . The enumeration degrees in the range of ι are exactly the total ones.

Let $d_e(A)' = d_e(J_e(A))$. The jump is always total and agrees with the Turing jump under the embedding ι .

Classes of Turing degrees

Definition. Given a set A, let $\mathcal{E}_A = \{d_T(X) | A \text{ is r.e. in } X\}$.

By Selman's Theorem:

Theorem. For any sets A and B,

The mapping $d_e(A) \rightarrow \mathcal{E}_A$ is an embedding of the enumeration degrees into the Muchnik degrees.

The set \mathcal{E}_A has a least element iff the degree $d_e(A)$ is total. If a least element exists then it is equal to the Turing degree $\iota^{-1}(d_e(A))$ of A.

Classes of Turing degrees

Definition. Given a set A, let $\mathcal{E}_A = \{ d_T(X) | A \text{ is r.e. in } X \}.$

By Selman's Theorem:

Theorem. For any sets A and B,

The mapping $d_e(A) \rightarrow \mathcal{E}_A$ is an embedding of the enumeration degrees into the Muchnik degrees.

The set \mathcal{E}_A has a least element iff the degree $d_e(A)$ is total. If a least element exists then it is equal to the Turing degree $\iota^{-1}(d_e(A))$ of A.

Jump classes

Theorem. (Jump inversion) For any set A there exists a total set X such that $A \leq_e X$ and $J_e(A) \equiv_e J_e(X) \equiv_e (J_T(X))^+$.

Corollary. For any set A, $\mathcal{E}_{J_e(A)} = \{\mathbf{a}' | \mathbf{a} \in \mathcal{E}_A\}$.

Corollary. For any set A the set $\{\mathbf{a}' | \mathbf{a} \in \mathcal{E}_A\}$ has a least element which is equal to $\iota^{-1}(d_e(J_e(A)))$.

By Coles, Downey and Slaman, the degree spectra of the torsion free Abelian groups of rank one are exactly the sets \mathcal{E}_A . Hence every such group has a jump degree.

<ロト < 同ト < 三ト

Jump classes

Theorem. (Jump inversion) For any set A there exists a total set X such that $A \leq_e X$ and $J_e(A) \equiv_e J_e(X) \equiv_e (J_T(X))^+$.

Corollary. For any set A, $\mathcal{E}_{J_e(A)} = \{\mathbf{a}' | \mathbf{a} \in \mathcal{E}_A\}$.

Corollary. For any set A the set $\{\mathbf{a}' | \mathbf{a} \in \mathcal{E}_A\}$ has a least element which is equal to $\iota^{-1}(d_e(J_e(A)))$.

By Coles, Downey and Slaman, the degree spectra of the torsion free Abelian groups of rank one are exactly the sets \mathcal{E}_A . Hence every such group has a jump degree.

・ロト ・同ト ・ヨト ・ヨト

The ω -enumeration degrees

Denote by ${\mathcal S}$ the set of all sequences of sets of natural numbers.

Definition. Given a sequence \mathcal{A} , let $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \in \mathcal{S} | \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$ Let $d_{\omega}(\mathcal{A}) \leq_{\omega} d_{\omega}(\mathcal{B}) \iff \mathcal{A} \leq_{\omega} \mathcal{B}.$

Denote by \mathcal{D}_{ω} the partial ordering of the ω -enumeration degrees.

 \mathcal{D}_{ω} is an upper semi-lattice with least element $\mathbf{0}_{\omega}$, where $d_{\omega}(\mathcal{A}) \vee d_{\omega}(\mathcal{B}) = d_{\omega}(\mathcal{A} \oplus \mathcal{B})$ and $\mathbf{0}_{\omega} = \{\mathcal{A} | \mathcal{A} \leq_{e} \{J_{e}^{(n)}(\emptyset)\}_{n < \omega}\}.$

Recall that if $A \subseteq \omega$ then by $A \uparrow \omega$ we denote the sequence $\{A, \emptyset, \ldots\}$. For $A, B \subseteq \omega, A \leq_e B \iff A \uparrow \omega \leq_\omega B \uparrow \omega$. Hence the mapping $\kappa : \mathcal{D}_e \to \mathcal{D}_\omega$, defined by $\kappa(d_e(A)) = d_\omega(A \uparrow \omega)$ is an embedding of \mathcal{D}_e into \mathcal{D}_ω .

The ω -enumeration degrees

Denote by ${\mathcal S}$ the set of all sequences of sets of natural numbers.

Definition. Given a sequence \mathcal{A} , let $d_{\omega}(\mathcal{A}) = \{\mathcal{B} \in \mathcal{S} | \mathcal{A} \equiv_{\omega} \mathcal{B}\}.$ Let $d_{\omega}(\mathcal{A}) \leq_{\omega} d_{\omega}(\mathcal{B}) \iff \mathcal{A} \leq_{\omega} \mathcal{B}.$

Denote by \mathcal{D}_{ω} the partial ordering of the ω -enumeration degrees.

 \mathcal{D}_{ω} is an upper semi-lattice with least element $\mathbf{0}_{\omega}$, where $d_{\omega}(\mathcal{A}) \vee d_{\omega}(\mathcal{B}) = d_{\omega}(\mathcal{A} \oplus \mathcal{B})$ and $\mathbf{0}_{\omega} = \{\mathcal{A} | \mathcal{A} \leq_{e} \{J_{e}^{(n)}(\emptyset)\}_{n < \omega}\}.$

Recall that if $A \subseteq \omega$ then by $A \uparrow \omega$ we denote the sequence $\{A, \emptyset, \ldots\}$. For $A, B \subseteq \omega$, $A \leq_e B \iff A \uparrow \omega \leq_\omega B \uparrow \omega$. Hence the mapping $\kappa : \mathcal{D}_e \to \mathcal{D}_\omega$, defined by $\kappa(d_e(A)) = d_\omega(A \uparrow \omega)$ is an embedding of \mathcal{D}_e into \mathcal{D}_ω .

Jump classes

Definition. Given an element $\mathcal{A} = \{A_k\}_{k < \omega}$ of \mathcal{S} define the *jump* class $\mathcal{J}_{\mathcal{A}}$ of \mathcal{A} by

$$\mathcal{J}_{\mathcal{A}} = \{ d_{\mathcal{T}}(X) | (\forall k) (A_k \text{ is r.e. in } J_{\mathcal{T}}^{(k)}(X) \text{ uniformly in } k) \}$$

= $\{ d_{\mathcal{T}}(X) | (\forall k) (A_k \in \Sigma_{k+1}^X \text{ uniformly in } k) \}.$

From the definition of the ω -reducibility we get directly:

Theorem. Let $\mathcal{A}, \mathcal{B} \in \mathcal{S}$. Then **1** $\mathcal{A} \leq_{\omega} \mathcal{B} \iff \mathcal{J}_{\mathcal{B}} \subseteq \mathcal{J}_{\mathcal{A}}$. **2** $\mathcal{A} \equiv_{\omega} \mathcal{B} \iff \mathcal{J}_{\mathcal{A}} = \mathcal{J}_{\mathcal{B}}$.

Notice also that $\mathcal{J}_{\mathcal{A}} = \{ \mathbf{x} \in \mathcal{D}_{\mathcal{T}} | d_{\omega}(\mathcal{A}) \leq_{\omega} \kappa(\iota(\mathbf{x})) \}.$

Theorem. For any ω -enumeration degrees **a** and **b**,

Let $\mathcal{D}_1 = \{\kappa(\mathbf{x}) | \mathbf{x} \in \mathcal{D}_e\}.$

Corollary. The set \mathcal{D}_1 is a base of the automorphisms of \mathcal{D}_{ω} .

The jump operator

Definition. Let $\mathcal{A}' = \{\mathcal{P}_{k+1}(\mathcal{A})\}_{k < \omega}$.

For example, $\emptyset'_{\omega} \equiv_{e} {\{\emptyset^{(k+1)}\}}_{k < \omega}$. Moreover for every $A \subseteq \mathbb{N}$, $(A \uparrow \omega)' = {A^{(k+1)}}_{k < \omega}$ and hence $(A \uparrow \omega)' \equiv_{\omega} A' \uparrow \omega$.

Theorem.
$$J_{\mathcal{A}'} = \{ \mathbf{a}' : \mathbf{a} \in J_{\mathcal{A}} \}.$$

Corollary. $\mathcal{A} \leq_{\omega} \mathcal{B} \Rightarrow \mathcal{A}' \leq_{\omega} \mathcal{B}'$.

The jump operator on \mathcal{D}_{ω} agrees with the enumeration jump and with the Turing jump:

•
$$(\forall \mathbf{a} \in \mathcal{D}_e)[\kappa(\mathbf{a}') = \kappa(\mathbf{a})'].$$

•
$$(\forall \mathbf{a} \in \mathcal{D}_{\mathcal{T}})[\iota(\kappa(\mathbf{a}')) = \iota(\kappa(\mathbf{a}))']$$

Jump inversion

Set
$$\mathcal{A}^{(0)} = \mathcal{A}$$
 and $\mathcal{A}^{(n+1)} = (\mathcal{A}^{(n)})'$. For every n ,
 $\mathcal{A}^{(n)} \equiv_{e} \{\mathcal{P}_{n+k}(\mathcal{A})\}_{k < \omega}$.

Definition. Given $n \in \mathbb{N}$ and $\mathcal{A} \in \mathcal{S}$ let $I_n(\mathcal{A}) = \{B_k\}_{k < \omega}$, where $B_k = \emptyset$ if k < n and $B_k = \mathcal{P}_{k-n}(\mathcal{A})$ if $n \leq k$.

So
$$I_n(\mathcal{A}) = \{\underbrace{\emptyset, \dots, \emptyset}_n, \mathcal{P}_0(\mathcal{A}), \mathcal{P}_1(\mathcal{A}), \dots\}$$

Theorem. Let
$$\emptyset_{\omega}^{(n)} \leq_{\omega} \mathcal{A}$$
. Then
1 $I_n(\mathcal{A})^{(n)} \equiv_{\omega} \mathcal{A}$.
1 $I_n(\mathcal{A}) \equiv_{\omega} \mathcal{A}$, then $I_n(\mathcal{A}) \leq_{\omega} \mathcal{B}$

- 4 🗗 ▶

Jump inversion

Set
$$\mathcal{A}^{(0)} = \mathcal{A}$$
 and $\mathcal{A}^{(n+1)} = (\mathcal{A}^{(n)})'$. For every n ,
 $\mathcal{A}^{(n)} \equiv_{e} \{\mathcal{P}_{n+k}(\mathcal{A})\}_{k < \omega}$.

Definition. Given $n \in \mathbb{N}$ and $\mathcal{A} \in \mathcal{S}$ let $I_n(\mathcal{A}) = \{B_k\}_{k < \omega}$, where $B_k = \emptyset$ if k < n and $B_k = \mathcal{P}_{k-n}(\mathcal{A})$ if $n \leq k$.

So
$$I_n(\mathcal{A}) = \{\underbrace{\emptyset, \dots, \emptyset}_n, \mathcal{P}_0(\mathcal{A}), \mathcal{P}_1(\mathcal{A}), \dots\}$$

Theorem. Let
$$\emptyset_{\omega}^{(n)} \leq_{\omega} \mathcal{A}$$
. Then
1 $I_n(\mathcal{A})^{(n)} \equiv_{\omega} \mathcal{A}$.
1 $I_n(\mathcal{B})^{(n)} \equiv_{\omega} \mathcal{A}$, then $I_n(\mathcal{A}) \leq_{\omega} \mathcal{B}$

Relativized jump inversion

Fix $\mathcal{A} = \{A_k\}_{k < \omega}$ and set

$$I^n_{\mathcal{A}}(\mathcal{B}) = \{A_0, \ldots, A_{n-1}, \mathcal{P}_0(\mathcal{B}), \mathcal{P}_1(\mathcal{B}), \ldots\}.$$

Theorem. Let
$$\mathcal{A}^{(n)} \leq_{\omega} \mathcal{B}$$
. Then
1 $I^n_{\mathcal{A}}(\mathcal{B})^{(n)} \equiv_{\omega} \mathcal{B}$.
2 If $\mathcal{A} \leq_{\omega} \mathcal{C}$ and $\mathcal{C}^{(n)} \equiv_{\omega} \mathcal{B}$, then $I^n_{\mathcal{A}}(\mathcal{B}) \leq_{\omega} \mathcal{C}$.

Proposition. Let $n \ge 0$. If $A_1 \le_{\omega} A_2$ and $B_1 \le_{\omega} B_2$ then

 $I^n_{\mathcal{A}_1}(\mathcal{B}_1) \leq_\omega I^n_{\mathcal{A}_2}(\mathcal{B}_2)$

The jump operator on the ω -degrees

Definition. For $n \ge 0$, $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$, let $l_{\mathbf{a}}^{n}(\mathbf{b}) = d_{\omega}(l_{\mathcal{A}}^{n}(\mathcal{B}))$.

Theorem. For every $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$, if $\mathbf{a}^{(n)} \leq_{\omega} \mathbf{b}$ then $l_{\mathbf{a}}^{n}(\mathbf{b})$ is the least element of the set $\{\mathbf{x} \in \mathcal{D}_{\omega} | \mathbf{a} \leq_{\omega} \mathbf{x} \& \mathbf{x}^{(n)} = \mathbf{b}\}$.

Theorem. For every $\mathbf{a} \in \mathcal{D}_{\omega}$ and $n \geq 0$,

$$\{\mathbf{x}^{(n)}: \mathbf{a} \leq_\omega \mathbf{x} \leq_\omega \mathbf{a}'\} = \{\mathbf{y}: \mathbf{a}^{(n)} \leq_\omega \mathbf{y} \leq_\omega \mathbf{a}^{(n+1)}\}.$$

Theorem. Let $\mathbf{a} \in \mathcal{D}_{\omega}$ and $n \ge 0$. Then

$$\mathcal{D}_{\omega}[\mathbf{a}^{(n)},\mathbf{a}^{(n+1)}]\simeq \mathcal{D}_{\omega}[\mathbf{a},I_{\mathbf{a}}^{n}(\mathbf{a}^{(n+1)})].$$

Minimal pairs

Definition. The degrees a, b are a minimal pair above x iff

- **1** $\mathbf{x} <_{\omega} \mathbf{a}$ and $\mathbf{x} <_{\omega} \mathbf{b}$ and
- **2** If $\mathbf{y} \leq_{\omega} \mathbf{a}$ and $\mathbf{y} \leq_{\omega} \mathbf{b}$ then $\mathbf{y} \leq_{\omega} \mathbf{x}$.

Theorem.

- For any x ∈ D_ω there exists a minimal pair above x of enumeration degrees.
- 2 If \mathbf{a}, \mathbf{b} is a minimal pair above \mathbf{x} then for all n,

$$\mathbf{a}^{(n)} \wedge \mathbf{b}^{(n)} = \mathbf{x}^{(n)}.$$

Exact pairs

Let I be an ideal of ω -enumeration degrees.

Definition. The degrees **a**, **b** are an exact pair of *I* iff

- $(\forall x \in I)(x <_{\omega} a \& x <_{\omega} b) \text{ and }$
- **2** If $\mathbf{y} \leq_{\omega} \mathbf{a}$ and $\mathbf{y} \leq_{\omega} \mathbf{b}$ then $\mathbf{y} \in I$.

Definition. Given an ideal I, let $I^{(n)}$ be the least ideal containing the *n*th jumps of the elements of I.

Theorem. Let I be a countable ideal. Then

- **1** If I has an exact pair, then it has an exact pair of e-degrees.
- If a, b is an exact pair of a non-principal ideal I, then for all n, a⁽ⁿ⁾, b⁽ⁿ⁾ is an exact pair of I⁽ⁿ⁾.

Not every countable ideal has an exact pair

Example. Consider the ideal I generated by the sequence $\mathbf{0}_{\omega}, \mathbf{0}'_{\omega}, \ldots$. Let $\mathbf{a} = d_{\omega}(A \uparrow \omega)$ be an upper bound of I. By Enderton and Putnam Theorem, $\emptyset^{(\omega)} \leq_{\mathbf{e}} A'''$ and hence

$$\mathbf{0}_{\omega}^{(\omega)} = d_{\omega}(\emptyset^{(\omega)} \uparrow \omega) \leq_{\omega} \mathbf{a}^{\prime\prime\prime}.$$

Assume that I has an exact pair. Then it has an exact pair \mathbf{a}, \mathbf{b} of enumeration degrees and hence $\mathbf{0}_{\omega}^{(\omega)} \leq_{\omega} \mathbf{a}^{\prime\prime\prime}$ and $\mathbf{0}_{\omega}^{(\omega)} \leq_{\omega} \mathbf{b}^{\prime\prime\prime}$. On the other hand $\mathbf{a}^{\prime\prime\prime}$ and $\mathbf{b}^{\prime\prime\prime}$ is an exact pair of $I^{\prime\prime\prime} = I$. A contradiction.

Definability of the enumeration degrees

Denote by \mathcal{D}_{ω}' the structure $(\mathcal{D}_{\omega}; \mathbf{0}_{\omega}; \leq_{\omega}; ')$ of the ω -enumeration degrees augmented by the jump operation.

Definition. Given $\mathbf{a}, \mathbf{x} \in \mathcal{D}_{\omega}$, let

$$\mathcal{I}_{\mathbf{a}} = \{ I_{\mathbf{a}}^{1}(\mathbf{x}) : \mathbf{a}' \leq_{\omega} \mathbf{x} \}.$$

Notice that

$$\mathsf{z} \in \mathcal{I}_\mathsf{a} \iff \mathsf{a} \leq_\omega \mathsf{z} \And (\forall \mathsf{y}) (\mathsf{a} \leq_\omega \mathsf{y} \And \mathsf{y}' = \mathsf{z}' \Rightarrow \mathsf{z} \leq_\omega \mathsf{y}).$$

Hence there exists a fist order formula Φ with two free variables such that

$$\mathcal{D}_{\omega}{}'\models \Phi(\mathsf{z},\mathsf{a})\iff \mathsf{z}\in\mathcal{I}_{\mathsf{a}}.$$

Proposition. Let
$$\mathbf{a} = d_{\omega}(\mathcal{A})$$
 and $\mathbf{b} = d_{\omega}(\mathcal{B})$. Then

$$\mathcal{I}_{\mathbf{a}} \subseteq \mathcal{I}_{\mathbf{b}} \iff \mathbf{b} \leq_{\omega} \mathbf{a} \& A_0 \equiv_{e} B_0.$$

Proposition. For all $\mathbf{a} \in \mathcal{D}_{\omega}$,

$$\mathbf{a} \in \mathcal{D}_e \iff (\forall \mathbf{b})(\mathcal{I}_\mathbf{a} \subseteq \mathcal{I}_\mathbf{b} \Rightarrow \mathcal{I}_\mathbf{a} = \mathcal{I}_\mathbf{b}).$$

Corollary. \mathcal{D}_e is first order definable in \mathcal{D}_{ω}' .

From the properties of the minimal pairs:

Theorem. \mathcal{D}_e is definable in \mathcal{D}_ω iff the jump is definable in \mathcal{D}_ω .

Proposition. Let
$$\mathbf{a} = d_{\omega}(\mathcal{A})$$
 and $\mathbf{b} = d_{\omega}(\mathcal{B})$. Then

$$\mathcal{I}_{\mathbf{a}} \subseteq \mathcal{I}_{\mathbf{b}} \iff \mathbf{b} \leq_{\omega} \mathbf{a} \& A_0 \equiv_{e} B_0.$$

Proposition. For all $\mathbf{a} \in \mathcal{D}_{\omega}$,

$$\mathbf{a} \in \mathcal{D}_{\mathbf{e}} \iff (\forall \mathbf{b})(\mathcal{I}_{\mathbf{a}} \subseteq \mathcal{I}_{\mathbf{b}} \Rightarrow \mathcal{I}_{\mathbf{a}} = \mathcal{I}_{\mathbf{b}}).$$

Corollary. \mathcal{D}_e is first order definable in \mathcal{D}_{ω}' .

From the properties of the minimal pairs:

Theorem. \mathcal{D}_e is definable in \mathcal{D}_{ω} iff the jump is definable in \mathcal{D}_{ω} .

< □ > < 同 >

Slaman-Woodin Coding lemma

Theorem. (Slaman-Woodin Coding Lemma) Every countable relation on the enumeration degrees is uniformly first order definable from parameters in \mathcal{D}_e .

Consider a countable set \mathcal{R} of ω -enumeration degrees. Let **a** be an enumeration degree which bounds all elements of \mathcal{R} . For any element **x** of \mathcal{R} one can construct an enumeration degree $\mathbf{b}_{\mathbf{x}}$ such that $\mathbf{a}, \mathbf{b}_{\mathbf{x}}$ is a minimal pair over **x**. Let $\mathcal{R}_{e} = \{\mathbf{b}_{\mathbf{x}} : \mathbf{x} \in \mathcal{R}\}$. By the definability of \mathcal{D}_{e} and the Coding lemma, \mathcal{R}_{e} is first order definable in \mathcal{D}_{ω}' . Clearly

$$\mathbf{x} \in \mathcal{R} \iff (\exists \mathbf{b} \in \mathcal{R}_e)(\mathbf{x} = \mathbf{a} \wedge \mathbf{b}).$$

Slaman-Woodin Coding lemma

Theorem. (Slaman-Woodin Coding Lemma) Every countable relation on the enumeration degrees is uniformly first order definable from parameters in \mathcal{D}_e .

Consider a countable set \mathcal{R} of ω -enumeration degrees. Let **a** be an enumeration degree which bounds all elements of \mathcal{R} . For any element **x** of \mathcal{R} one can construct an enumeration degree $\mathbf{b}_{\mathbf{x}}$ such that $\mathbf{a}, \mathbf{b}_{\mathbf{x}}$ is a minimal pair over **x**. Let $\mathcal{R}_e = \{\mathbf{b}_{\mathbf{x}} : \mathbf{x} \in \mathcal{R}\}$. By the definability of \mathcal{D}_e and the Coding lemma, \mathcal{R}_e is first order definable in \mathcal{D}_{ω}' . Clearly

$$\mathbf{x} \in \mathcal{R} \iff (\exists \mathbf{b} \in \mathcal{R}_e)(\mathbf{x} = \mathbf{a} \wedge \mathbf{b}).$$

Image: A image: A

Theorem. Every countable relation on the ω -enumeration degrees is uniformly first order definable in \mathcal{D}_{ω}' from parameters in \mathcal{D}_{e} .

Corollary. The first order theory of \mathcal{D}_{ω}' is recursively isomorphic to second order arithmetic.

The automorphisms of $\mathcal{D}_{\omega}{}'$

Recall that \mathcal{D}_e is a base of the automorphisms of \mathcal{D}_{ω} and hence of the automorphisms of \mathcal{D}_{ω}' . By the definability of \mathcal{D}_e :

Theorem. Every (nontrivial) automorphism of \mathcal{D}_{ω}' induces a (nontrivial) automorphism of \mathcal{D}_{e} .

In the reverse direction we use a version of the J. Richter's Theorem about automorphisms of $\mathcal{D}_{\mathcal{T}}'$:

Theorem. Every automorphism of \mathcal{D}_{e}' is the identity on the cone above $\mathbf{0}_{e}^{(4)}$.

Now consider an automorphism φ of \mathcal{D}_{e}' . Given a sequence \mathcal{A} let $J_{\mathcal{A}}^{e} = \{ \mathbf{x} \in \mathcal{D}_{e} : d_{\omega}(\mathcal{A}) \leq_{\omega} \mathbf{x} \}.$ Clearly $\mathcal{A} \equiv_{\omega} \mathcal{B} \iff J_{\mathcal{A}}^{e} = J_{\mathcal{B}}^{e}$. Hence $J_{\mathcal{A}}^{e} = J_{\mathcal{P}(\mathcal{A})}^{e}$.

Notice that for every sequence A, if $n \ge 4$ then

$$\varphi(d_e(\mathcal{P}_n(\mathcal{A}))) = d_e(\mathcal{P}_n(\mathcal{A}))$$

Given a sequence A, construct the sequence B so that $B_0 \in \varphi(d_e(A_0)), \ldots, B_3 \in \varphi(d_e(A_3))$ and for $n \ge 4$, $B_n = \mathcal{P}_n(A)$.

Lemma. $J_{\mathcal{B}}^{e} = \{\varphi(\mathbf{x}) | \mathbf{x} \in J_{\mathcal{A}}^{e}\}.$

Let $\Phi(d_{\omega}(\mathcal{A})) = d_{\omega}(\mathcal{B})$, where \mathcal{B} is constructed as above.

Theorem. The mapping Φ is well defined and has the following properties:

$$(\forall \mathbf{x} \in \mathcal{D}_e)(\Phi(\mathbf{x}) = \varphi(\mathbf{x})).$$

2
$$\Phi$$
 is an automorphism of \mathcal{D}_{ω}' .

Denote by $Aut(\mathcal{D}_{e}')$ and $Aut(\mathcal{D}_{\omega}')$ respectively the group of the automorphisms of \mathcal{D}_{e}' and \mathcal{D}_{ω}' . For $\varphi \in Aut(\mathcal{D}_{e}')$ let $\Lambda(\varphi) = \Phi$, where Φ is defined as above.

Theorem. A is an isomorphism from $Aut(\mathcal{D}_{e}')$ to $Aut(\mathcal{D}_{\omega}')$.

By a result of Kalimullin the jump is first order definable in \mathcal{D}_e .

Theorem. The groups of the automorphisms of \mathcal{D}_e and \mathcal{D}_{ω}' are isomorphic.

★ ∃ →

Theorem. The mapping Φ is well defined and has the following properties:

$$(\forall \mathbf{x} \in \mathcal{D}_e)(\Phi(\mathbf{x}) = \varphi(\mathbf{x})).$$

2
$$\Phi$$
 is an automorphism of \mathcal{D}_{ω}' .

Denote by $Aut(\mathcal{D}_{e}')$ and $Aut(\mathcal{D}_{\omega}')$ respectively the group of the automorphisms of \mathcal{D}_{e}' and \mathcal{D}_{ω}' . For $\varphi \in Aut(\mathcal{D}_{e}')$ let $\Lambda(\varphi) = \Phi$, where Φ is defined as above.

Theorem. Λ is an isomorphism from $Aut(\mathcal{D}_{e}')$ to $Aut(\mathcal{D}_{\omega}')$.

By a result of Kalimullin the jump is first order definable in \mathcal{D}_e .

Theorem. The groups of the automorphisms of \mathcal{D}_e and \mathcal{D}_{ω}' are isomorphic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition.(Lachlan and Shore) A recursive sequence of finite sets $\{B^s\}$ is a *good* approximation of the set *B* if it satisfies the following two conditions:

 $(G1) \ (\forall n)(\exists s)(B \upharpoonright n \subseteq B^s \subseteq B). \\ (G2) \ (\forall n)(\exists s)(\forall t \ge s)(B^t \subseteq B \Rightarrow B \upharpoonright n \subseteq B^t).$

The numbers s s.t. $B^s \subseteq B$ are called *good stages* of the approximation B^s .

Definition. Let $\mathcal{B} = \{B_k\}_{k < \omega}$ be a sequence of sets of natural numbers. A sequence $\{B_k^s\}$ of finite sets recursive in k and s is a good approximation of \mathcal{B} if the following conditions are satisfied:

(i) For all k, B_k^s is a good approximation of B_k .

(ii) If $r \leq k$ then the good stages of B_k^s are good stages of B_r^s .

Density

Theorem. Every ω -enumeration degree below $\mathbf{0}'_{\omega}$ contains a sequence \mathcal{A} which has a good approximation.

Theorem. The partial ordering of the ω -enumeration degrees below $\mathbf{0}'_{\omega}$ is dense.

Theorem. There is no minimal ω -enumeration degree

The degrees on

Definition. Given
$$n \ge 1$$
, set $o_n = I_{\mathbf{0}_{\omega}}^n(\mathbf{0}_{\omega}^{(n+1)})$.

For
$$n \ge 1$$
, $o_n = d_{\omega}(\underbrace{\emptyset, \dots, \emptyset}_{n}, \emptyset^{(n+1)}, \emptyset^{(n+2)}, \dots)$. Hence
 $(\forall n \ge 1)(o_n > o_{n+1}).$

Theorem. $\mathcal{D}_{\omega}[\mathbf{o}_1, \mathbf{0}'] \cong \mathcal{D}_e[\mathbf{0}_e, \mathbf{0}_e'].$

Theorem. For every $n \ge 1$, $\mathcal{D}_{\omega}[\mathbf{o}_{n+1}, \mathbf{o}_n] \cong \mathcal{D}_{e}[\mathbf{0}_{e}^{(n)}, \mathbf{0}_{e}^{(n+1)}]$.

Theorem. For every $n \ge 1$, $\mathcal{D}_{\omega}[\mathbf{0}, \mathbf{o}_{\mathbf{n}}] \cong \mathcal{D}_{\omega}[\mathbf{0}^{(n)}, \mathbf{0}^{(n+1)}]$.

The degrees on

Definition. Given
$$n \ge 1$$
, set $o_n = I_{\mathbf{0}_{\omega}}^n(\mathbf{0}_{\omega}^{(n+1)})$.

For
$$n \ge 1$$
, $o_n = d_{\omega}(\underbrace{\emptyset, \dots, \emptyset}_{n}, \emptyset^{(n+1)}, \emptyset^{(n+2)}, \dots)$. Hence
 $(\forall n \ge 1)(o_n > o_{n+1}).$

Theorem. $\mathcal{D}_{\omega}[\mathbf{o}_1, \mathbf{0}'] \cong \mathcal{D}_e[\mathbf{0}_e, \mathbf{0}_e'].$

Theorem. For every $n \ge 1$, $\mathcal{D}_{\omega}[\mathbf{o}_{n+1}, \mathbf{o}_n] \cong \mathcal{D}_{e}[\mathbf{0}_{e}^{(n)}, \mathbf{0}_{e}^{(n+1)}]$.

Theorem. For every $n \ge 1$, $\mathcal{D}_{\omega}[\mathbf{0}, \mathbf{o}_n] \cong \mathcal{D}_{\omega}[\mathbf{0}^{(n)}, \mathbf{0}^{(n+1)}]$.

The almost zero elements

Definition. A degree **a** is almost zero (a.z.) if $(\forall n)(\mathbf{a} <_{\omega} \mathbf{o_n})$.

Theorem. A degree $\mathbf{a} < \mathbf{0}'_{\omega}$ is a.z. iff there exists $\mathcal{A} \in \mathbf{a}$ s.t. $(\forall n)(\mathcal{A}_n \leq_e J_e^n(\emptyset)).$

There exist a.z. elements below $\mathbf{0}'_{\omega}$ which are not equal to $\mathbf{0}_{\omega}$.

Corollary.

- **1** The a.z. elements below $\mathbf{0}'_{\omega}$ form an ideal.
- For every n and every a.z. degree a, the least solution of the equation x⁽ⁿ⁾ = a⁽ⁿ⁾ is equal to a.
- $\textbf{ o } If \mathbf{a} \neq \mathbf{0}_{\omega} is a.z. then (\forall n) (\mathbf{0}_{\omega}^{(n)} <_{\omega} \mathbf{a}^{(n)} <_{\omega} \mathbf{0}_{\omega}^{(n+1)}).$

< ロ > < 同 > < 回 > < 回 >

The classes H and L

Definition. Let $n \ge 1$. An ω -enumeration degree $\mathbf{a} \le \mathbf{0}_{\omega}'$ is high n if $\mathbf{a}^{(n)} = \mathbf{0}_{\omega}^{(n+1)}$. The degree \mathbf{a} is low n if $\mathbf{a}^{(n)} = \mathbf{0}_{\omega}^{(n)}$.

Denote by H_n the set of all high n degrees and by L_n set of all low n degrees. Set

$$H = \bigcup_{n \ge 1} H_n; \ L = \bigcup_{n \ge 1} L_n \text{ and } I = \{ \mathbf{a} \le_{\omega} \mathbf{0}_{\omega}' : \mathbf{a} \notin (H \cup L) \}.$$

Theorem. Let $\mathbf{a} \leq_{\omega} \mathbf{0}'$. Then **a** $\in H \iff (\forall a.z. \mathbf{b})(\mathbf{b} \leq_{\omega} \mathbf{a});$ **a** $\in L \iff (\forall a.z. \mathbf{b})(\mathbf{b} \leq_{\omega} \mathbf{a} \Rightarrow \mathbf{b} = \mathbf{0}_{\omega}).$

(I) > (m) > (=) < =)</p>

The classes H and L

Definition. Let $n \ge 1$. An ω -enumeration degree $\mathbf{a} \le \mathbf{0}_{\omega}'$ is high n if $\mathbf{a}^{(n)} = \mathbf{0}_{\omega}^{(n+1)}$. The degree \mathbf{a} is low n if $\mathbf{a}^{(n)} = \mathbf{0}_{\omega}^{(n)}$.

Denote by H_n the set of all high n degrees and by L_n set of all low n degrees. Set

$$H = \bigcup_{n \ge 1} H_n; \ L = \bigcup_{n \ge 1} L_n \text{ and } I = \{ \mathbf{a} \le_{\omega} \mathbf{0}_{\omega}' : \mathbf{a} \notin (H \cup L) \}.$$

Theorem. Let $\mathbf{a} \leq_{\omega} \mathbf{0}'$. Then **a** $\in H \iff (\forall a.z. \mathbf{b})(\mathbf{b} \leq_{\omega} \mathbf{a});$ **a** $\in L \iff (\forall a.z. \mathbf{b})(\mathbf{b} \leq_{\omega} \mathbf{a} \Rightarrow \mathbf{b} = \mathbf{0}_{\omega}).$

Embedding partial orderings

Theorem. Let $\mathbf{a} < \mathbf{b} \leq \mathbf{0}'_{\omega}$. Then every countable partial ordering can be embedded in $\mathcal{D}_{\omega}[\mathbf{a}, \mathbf{b}]$.

Definition. The ω -enumeration degrees **a** and **b** are a *Kalimullin* pair over **c** iff $(\forall \mathbf{x} \leq \mathbf{0}'_{\omega})[(\mathbf{a} \lor \mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{c} \lor \mathbf{x}) = \mathbf{c} \lor \mathbf{x}].$

Theorem. There exists a family A_i of sequences uniformly below \emptyset'_{ω} such that for all i, $d_{\omega}(A_i)$ is a.z. and for any r.e. sets U and V, $d_{\omega}(\bigoplus_{i \in U} A_i)$ and $d_{\omega}(\bigoplus_{i \in V} A_i)$ is a Kalimullin pair over $d_{\omega}(\bigoplus_{i \in U \cap V} A_i)$.

Embedding partial orderings

Theorem. Let $\mathbf{a} < \mathbf{b} \leq \mathbf{0}'_{\omega}$. Then every countable partial ordering can be embedded in $\mathcal{D}_{\omega}[\mathbf{a}, \mathbf{b}]$.

Definition. The ω -enumeration degrees **a** and **b** are a *Kalimullin* pair over **c** iff $(\forall \mathbf{x} \leq \mathbf{0}'_{\omega})[(\mathbf{a} \lor \mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{c} \lor \mathbf{x}) = \mathbf{c} \lor \mathbf{x}].$

Theorem. There exists a family A_i of sequences uniformly below \emptyset'_{ω} such that for all i, $d_{\omega}(A_i)$ is a.z. and for any r.e. sets U and V, $d_{\omega}(\bigoplus_{i \in U} A_i)$ and $d_{\omega}(\bigoplus_{i \in V} A_i)$ is a Kalimullin pair over $d_{\omega}(\bigoplus_{i \in U \cap V} A_i)$.

Embedding partial orderings

Theorem. Let $\mathbf{a} < \mathbf{b} \leq \mathbf{0}'_{\omega}$. Then every countable partial ordering can be embedded in $\mathcal{D}_{\omega}[\mathbf{a}, \mathbf{b}]$.

Definition. The ω -enumeration degrees **a** and **b** are a *Kalimullin* pair over **c** iff $(\forall \mathbf{x} \leq \mathbf{0}'_{\omega})[(\mathbf{a} \lor \mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{c} \lor \mathbf{x}) = \mathbf{c} \lor \mathbf{x}].$

Theorem. There exists a family A_i of sequences uniformly below \emptyset'_{ω} such that for all i, $d_{\omega}(A_i)$ is a.z. and for any r.e. sets U and V, $d_{\omega}(\bigoplus_{i \in U} A_i)$ and $d_{\omega}(\bigoplus_{i \in V} A_i)$ is a Kalimullin pair over $d_{\omega}(\bigoplus_{i \in U \cap V} A_i)$.

Embedding partial orderings

Theorem. Let $\mathbf{a} < \mathbf{b} \leq \mathbf{0}'_{\omega}$. Then every countable partial ordering can be embedded in $\mathcal{D}_{\omega}[\mathbf{a}, \mathbf{b}]$.

Definition. The ω -enumeration degrees **a** and **b** are a *Kalimullin* pair over **c** iff $(\forall \mathbf{x} \leq \mathbf{0}'_{\omega})[(\mathbf{a} \lor \mathbf{c} \lor \mathbf{x}) \land (\mathbf{b} \lor \mathbf{c} \lor \mathbf{x}) = \mathbf{c} \lor \mathbf{x}].$

Theorem. There exists a family A_i of sequences uniformly below \emptyset'_{ω} such that for all i, $d_{\omega}(A_i)$ is a.z. and for any r.e. sets U and V, $d_{\omega}(\bigoplus_{i \in U} A_i)$ and $d_{\omega}(\bigoplus_{i \in V} A_i)$ is a Kalimullin pair over $d_{\omega}(\bigoplus_{i \in U \cap V} A_i)$.

Local definability

Theorem. For every $n \ge 1$, $\{o_n\}$ is first order definable in $\mathcal{D}_{\omega}[\mathbf{0}_{\omega}, \mathbf{0}'_{\omega}]$.

Notice that if $\mathbf{a} \leq_{\omega} \mathbf{0}_{\omega}'$ then $\mathbf{a} \in H_n \iff o_n \leq_{\omega} \mathbf{a}$ and $\mathbf{a} \in L_n \iff o_n \wedge \mathbf{a} = \mathbf{0}_{\omega}$.

Corollary.

- For every n, the classes H_n and L_n are first order definable in D_ω[**0**_ω, **0**'_ω].
- The Σ₂ enumeration degrees are first order definable in D_ω[**0**_ω, **0**'_ω].
- There exists an interpretation of True Arithmetic in *D_w*[**0**_w, **0**'_w].

Thank you!

æ