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Generalizations of the enumeration reducibility

Enumeration reducibility

Let {W,;}icw, {Di}icw be standard listings of the recursively
enumerable sets and the finite sets of numbers.

Definition.(Friedberg and Rogers, 1959) We say that W : 2 — 2
is an enumeration operator (or e-operator) iff for some r.e. set W;

W(B) = {x|(3D)[(x. D) € W; &D C B]}

for each B C w.

If W is defined by means of the r.e set W; then we say that i is an
index of W and write V = V;.

Definition. For any sets A and B define A is enumeration
reducible to B, written A <. B, by A = W(B) for some e-operator
v,
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Generalizations of the enumeration reducibility

The enumeration jump

Definition. Given A C w, set AT = A® (w )\ A). |

Theorem. For any A, B C w,
Q@ Aisre. inBiffA<.B™T.
Q@ A<t BIiffAT <. B™.
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Generalizations of the enumeration reducibility

The enumeration jump

Definition. Given A C w, set AT = A® (w )\ A). |

Theorem. For any A, B C w,
Q@ Aisre. inBiffA<.B™T.
Q@ A<t BIiffAT <. B™.

Definition.(Cooper, McEvoy) Given A C w, let
Ea = {{i,x)|x € V;(A)}. Set Jo(A) = EJ.

The enumeration jump J is monotone and agrees with the Turing
jump J7 in the following sense:

Theorem. For any A C w, JT(A)T =¢ Jo(AT). ]




Generalizations of the enumeration reducibility

Given a set X of natural numbers, let Jgo)(X) = X and
JIX) = LS (X)),

Theorem. For all X and for all n, J(”)(X+) (J(n)( ))
uniformly in X and n.

Definition. A set A is called total iff A=, AT. |
If A is total, then J{"(A) =. (JS)(A))*. ]

In particular, since 0 is total, J{(0) =. (J(T")(@))Jr uniformly in n.
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Generalizations of the enumeration reducibility

Enumeration reducibility and the relation "r.e. in”

Theorem. (Selman, 1971) For any sets A and B,

A< B < (VX C2°)(Bisre inX = Aisre. inX).

Theorem. (Case, 1974) For any sets A and B,

A< M) @B = (VX C29)(BisTX, = AisTX,).
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Generalizations of the enumeration reducibility

Enumeration reducibility and the relation "r.e. in”

Theorem. (Selman, 1971) For any sets A and B,

A< B < (VX C2°)(Bisre inX = Aisre. inX).

Theorem. (Case, 1974) For any sets A and B,

A< M) @B = (VX C29)(BisTX, = AisTX,).

Question: Characterize for all k,n € w the relation

A<k B «— (VX)(B € X 1(X) = A€ Zip1(X)).
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Generalizations of the enumeration reducibility

Ash’s generalizations

In 1992 C. Ash defines two versions of positive reducibilities
between sequences of sets:

Let A = {Ak}k<w and B = {Bx} k<. be two sequences of sets.

Definition.
@ A < B (A is non-uniformly reducible to B) iff

(VX C 2°)[(VK)(Bk € Tiit1) = (YK)(Ak € i)l
@ A <, B (A is uniformly reducible to B) iff

(VX C 2°)[(VK)(Bx € £, 1 uniformly in k) =
(Vk)(Ax € TX 1 uniformly in k)].

Ivan N. Soskov The w-enumeration degrees




Generalizations of the enumeration reducibility

Ash’s generalizations in terms of e-reducibility

Definition. Given a sequence A = {Ag}x<. of sets of natural
numbers, define the jump sequence P(A) = {Pk(A)}k<w by
means of recursion on k:

Q Po(A) = Ao;

(2 Pk+1(./4) — Je(Pk(A)) S Ak+1.
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Generalizations of the enumeration reducibility

Ash’s generalizations in terms of e-reducibility

Definition. Given a sequence A = {Ag}x<. of sets of natural
numbers, define the jump sequence P(A) = {Pk(A)}k<w by
means of recursion on k:

Q Po(A) = Ao;

Q Pii1(A) = Je(Pr(A)) ® Ak1-

Example. Let A C w. Consider the sequence
Atw={A0,...,0,...}. Then

Pr(ATw) = ék)(A) uniformly in k.
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Generalizations of the enumeration reducibility

Theorem. Let A and B be sequences of sets.
QO A<B < (Vk)(Ak <e P(B)).
Q@ A<, B < (Vk)(Ak <e Pk(B) uniformly in k).
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Generalizations of the enumeration reducibility

Theorem. Let A and B be sequences of sets.
QO A<B < (Vk)(Ak <e P(B)).
Q@ A<, B < (Yk)(Ak <e Pk(B) uniformly in k).

Definition. Say that A <. B iff there exists a recursive function f
such that

(VK)(Ak = Ve (Bi))-

Then A<, B <— A <. P(B). J

Ivan N. Soskov The w-enumeration degrees



Generalizations of the enumeration reducibility

Properties of the omega-reducibility

Let A = {Ak}k<w and B = {By}k<w. be sequences of sets of
natural numbers. Then A=, B iff A<, B and B <, A.
Similarly, A=, B iff A <. B and B <. A.
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Generalizations of the enumeration reducibility

Properties of the omega-reducibility

Let A = {Ak}k<w and B = {By}k<w. be sequences of sets of
natural numbers. Then A=, B iff A<, B and B <, A.
Similarly, A=, B iff A <. B and B <. A.

Q A<, B=A<, B
@ P(P(A)) =. P(A).
Q0 A=, P(A).

Q "=." and "=." are equivalence relations.
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Generalizations of the enumeration reducibility

Properties of the omega-reducibility

Let A = {Ak}k<w and B = {By}k<w. be sequences of sets of
natural numbers. Then A=, B iff A<, B and B <, A.
Similarly, A=, B iff A <. B and B <. A.

Q A<, B=A<, B
@ P(P(A)) =. P(A).
Q0 A=, P(A).

Q "=." and "=." are equivalence relations.

Definition. Let A& B = {Ax & Bi}rew ]

QO A<, A9 Band B<, AP B.
QIf A<, Cand B<,Cthen A B <, C.
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The semilattice of the omega-enumeration degrees

The enumeration degrees

Definition. Given a set A, let d.(A) = {B C w|A =, B}.
Let de(A) <e de(B) <— A <. B.

Denote by D, the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0., where
de(A)V de(B) = de(A® B) and 0. = {W|W is r.e.}.
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The semilattice of the omega-enumeration degrees

The enumeration degrees

Definition. Given a set A, let d.(A) = {B C w|A =, B}.
Let de(A) <e de(B) <— A <. B.

Denote by D, the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0., where
de(A) V de(B) = de(A® B) and 0. = {W|W is r.e.}.

The Rogers embedding. Define v : D — D, by

L(d7(A)) = de(AT). Then v is a proper embedding of Dt into De.
The enumeration degrees in the range of v are exactly the total
ones.
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The semilattice of the omega-enumeration degrees

The enumeration degrees

Definition. Given a set A, let d.(A) = {B C w|A =, B}.
Let de(A) <e de(B) <— A <. B.

Denote by D, the partial ordering of the enumeration degrees.

De is an upper semi-lattice with least element 0., where
de(A) V de(B) = de(A® B) and 0. = {W|W is r.e.}.

The Rogers embedding. Define v : D — D, by

L(d7(A)) = de(AT). Then v is a proper embedding of Dt into De.
The enumeration degrees in the range of v are exactly the total
ones.

Let de(A) = de(Je(A)). The jump is always total and agrees with
the Turing jump under the embedding ¢.
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The semilattice of the omega-enumeration degrees

Classes of Turing degrees

Definition. Given a set A, let £4 = {d7(X)| Ais r.e. in X}. |

By Selman’s Theorem:
Theorem. For any sets A and B,
QO A<.B < &g Cé&,.
Q AEe B — 5,4:53.

The mapping de(A) — Ea is an embedding of the enumeration
degrees into the Muchnik degrees.
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The semilattice of the omega-enumeration degrees

Classes of Turing degrees

Definition. Given a set A, let £4 = {d7(X)| Ais r.e. in X}. ]

By Selman’s Theorem:
Theorem. For any sets A and B,
QO A<.B < &g Cé&,.
Q AEe B — EAZEB.

The mapping de(A) — Ea is an embedding of the enumeration
degrees into the Muchnik degrees.

The set Ex has a least element iff the degree d.(A) is total. If a

least element exists then it is equal to the Turing degree
171(de(A)) of A.
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The semilattice of the omega-enumeration degrees

Jump classes

Theorem. (Jump inversion) For any set A there exists a total set X
such that A <¢ X and Jo(A) =e Jo(X) = (JT(X))T. ’

Corollary. For any set A, £,,a) = {a'|a € Ea}. J

Corollary. For any set A the set {a’|a € Ea} has a least element
which is equal to 1™ (de(Je(A))). ’
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The semilattice of the omega-enumeration degrees

Jump classes

Theorem. (Jump inversion) For any set A there exists a total set X
such that A <¢ X and Jo(A) =e Jo(X) = (JT(X))T. ’

Corollary. For any set A, £,,a) = {a'|a € Ea}. J

Corollary. For any set A the set {a'|a € Ea} has a least element
which is equal to 1™ (de(Je(A))).

By Coles, Downey and Slaman, the degree spectra of the torsion
free Abelian groups of rank one are exactly the sets E4. Hence
every such group has a jump degree.
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The semilattice of the omega-enumeration degrees

The w-enumeration degrees

Denote by S the set of all sequences of sets of natural numbers.

Definition. Given a sequence A, let d,(A) = {B € S|A =, B}.
Let d,(A) <, d,(B) <— A<, B. \

Denote by D, the partial ordering of the w-enumeration degrees.

D,, is an upper semi-lattice with least element 0,,, where \

do(A) V do(B) = du(A® B) and 0, = {A|A < {S(0)} news}-
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The semilattice of the omega-enumeration degrees

The w-enumeration degrees

Denote by S the set of all sequences of sets of natural numbers.

Definition. Given a sequence A, let d,(A) = {B € S|A =, B}.
Let d,(A) <, d,(B) <— A<, B.

Denote by D, the partial ordering of the w-enumeration degrees.

D,, is an upper semi-lattice with least element 0,,, where

do(A) V du(B) = dy(A @ B) and 0, = {A|A <c {S(0)} pews}-

Recall that if A C w then by A T w we denote the sequence
{A0,...}. FrABCw, A<.B <— Atw<,Blw.
Hence the mapping  : Do — D,,, defined by

k(de(A)) = du(A T w) is an embedding of D, into D,,,.
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The semilattice of the omega-enumeration degrees

Jump classes

Definition. Given an element A = {Ay}x<, of S define the jump
class J4 of A by

Ta = {dr(X)|(VK)(Ax is r.e. in J¥)(X) uniformly in k)}
= {d7(X)|(Vk)(Ax € ZX 1 uniformly in k)}.

From the definition of the w-reducibility we get directly:

Theorem. Let A, B <€ S. Then
QO A<, B <= TsC Ja
Q@ A=,B <= Ju=Js-
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The semilattice of the omega-enumeration degrees

Notice also that Ja = {x € Dt]|d,(A) <, &(¢(x))}. J

Theorem. For any w-enumeration degrees a and b,
Q@ a<,b << (VxeDr)(b <, r(x)) = a <, k((x))).
Q@ a<,b < (VxeD.)(b <, k(x)=a<, k(x)).

Let D1 = {k(x)|x € De}.

Corollary. The set D; is a base of the automorphisms of D,,,. J
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The semllattlce of the omega enumeratlon degrees
The jump operator

slobal definability and

0

®
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The jump operator

The jump operator

Definition. Let A" = {Px11(A) }k<w- |

For example, 0, =, {#(k*D},_,. Moreover for every A C N,
(ATw) ={AKHY, _ and hence (ATw) =, A T w.

Theorem. Jy = {a’:a € Ja}. |

Corollary. A<, B= A <, B |

The jump operator on D,, agrees with the enumeration jump and
with the Turing jump:

o (Va € D.)[r(a’) = «(a)].
o (Va € Dr)[i(x(a")) = ¢(r(a))]



The jump operator

Jump inversion

Set A© = A and A" = (A For every n,
Al =, {Pric(A) k<o

Definition. Given n € N and A € S let I,(A) = { Bk} k<w. Where
Bk =0 if k < nand By = Px_n(A) if n < k. J

So In(A) = {0,...,0,Po(A),Pi(A),...}

n
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The jump operator

Jump inversion

Set A© = A and A" = (A For every n,
Al =, {Pric(A) k<o

Definition. Given n€ N and A € S let /,(A) = {Bx}k<w, where
Bk =0 if k < nand By = Px_n(A) if n < k.

So In(A) = {0,...,0,Po(A),Pi(A),...}

n

Theorem. Let @S,") <. A. Then
Q /(AWM =, A
Q IfB(" =, A, then Ih(A) <, B.
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The jump operator

Relativized jump inversion

Fix A = {Ax}k<w and set
IA(B) = {Ao, ..., An-1,Po(B), Pi(B),...}.
Theorem. Let AW <, B. Then

o /1(B)" =, B.
Q@ If A<, C andC") =, B, then I3(B) <., C.

Proposition. Let n > 0. If A; <, Ay and By <, B> then

/./"111 (Bl) SW /.22(82)
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The jump operator

The jump operator on the w-degrees

Definition. For n > 0, a = d,(.A) and b = d,,(B), let
l2/(b) = d,(I3(B)).

Theorem. For every a,b € D, ifal" <, b then I7(b) is the least
element of the set {x € D,|a <, x & x(") = b}.

Theorem. For everya € D, and n > 0,

{x(n) a <, x <, a/} = {y : a(n) <o ¥ <o a(n+1)}‘

Theorem. Leta € D, and n > 0. Then
D,[a, al™ V] ~ D, [a, 17 (al"tD)].




The jump operator

Minimal pairs

Definition. The degrees a,b are a minimal pair above x iff
©Q x<,aand x <, b and
Q Ify<,aandy<,btheny <, x.

Theorem.

@Q For any x € D,, there exists a minimal pair above x of
enumeration degrees.

@Q Ifa,b is a minimal pair above x then for all n,

a™ A b(M) — x(m)
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The jump operator

Exact pairs

Let / be an ideal of w-enumeration degrees.

Definition. The degrees a,b are an exact pair of / iff
Q ("xel)(x<,a&x<,b) and
QIfy<,aandy<,bthenycel.

Definition. Given an ideal /, let /(") be the least ideal containing
the nth jumps of the elements of /.

Theorem. Let | be a countable ideal. Then
© If | has an exact pair, then it has an exact pair of e-degrees.
@ Ifa,b is an exact pair of a non-principal ideal I, then for all n,
a(™ b(" js an exact pair of 1(7.
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The jump operator

Not every countable ideal has an exact pair

Example. Consider the ideal | generated by the sequence
0.,,0,,.... Leta=d, (A1 w) be an upper bound of I. By
Enderton and Putnam Theorem, 0“) <. A" and hence

OL(UW) _ dw(w(w) Tw) <, a".

Assume that | has an exact pair. Then it has an exact pair a,b of
enumeration degrees and hence OL(:‘)) <, a" and Os,w) <, b"”.

On the other hand @"" and b is an exact pair of I" = 1. A
contradiction.
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Global definability and automorphisms

Definability of the enumeration degrees

Denote by D’ the structure (D,; 0,,; <,;’) of the w-enumeration
degrees augmented by the jump operation.

Definition. Given a,x € D, let

Ta = {I}(x) : a’ <, x}.

Notice that
zel, «— a<,z& (Wy)(a<uy&y =2=2z<,y).

Hence there exists a fist order formula ® with two free variables
such that

D, = ®(z,a) < z€ I,
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Global definability and automorphisms

Proposition. Let a = d,(.A) and b = d,(B). Then

IagIb <~ bﬁwa&AoEeBo.

Proposition. For alla € D,

aeD, — (Vb)(Ia CIy=1y= Ib).

Corollary. D, is first order definable in D,,’. J
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Global definability and automorphisms

Proposition. Let a = d,(.A) and b = d,(B). Then

IagIb <~ bﬁwa&AoEeBo.

Proposition. For alla € D,

aeD, — (Vb)(Ia CIy=1y= Ib).

Corollary. D, is first order definable in D,,’. J

From the properties of the minimal pairs:

Theorem. D, is definable in D, iff the jump is definable in D,,. )
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Global definability and automorphisms

Slaman-Woodin Coding lemma

Theorem. (Slaman-Woodin Coding Lemma) Every countable
relation on the enumeration degrees is uniformly first order
definable from parameters in De.
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Global definability and automorphisms

Slaman-Woodin Coding lemma

Theorem. (Slaman-Woodin Coding Lemma) Every countable
relation on the enumeration degrees is uniformly first order
definable from parameters in De.

Consider a countable set R of w-enumeration degrees. Let a be an
enumeration degree which bounds all elements of R. For any
element x of R one can construct an enumeration degree by such
that a, by is a minimal pair over x. Let Re = {bx : x € R}. By the
definability of De and the Coding lemma, R is first order
definable in D,,'. Clearly

XER < (Ibe Re)(x=aAb).
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Global definability and automorphisms

Theorem. Every countable relation on the w-enumeration degrees
is uniformly first order definable in D, from parameters in D,.

Corollary. The first order theory of D, is recursively isomorphic
to second order arithmetic.

Ivan N. Soskov The w-enumeration degrees



Global definability and automorphisms

The automorphisms of D,/

Recall that D, is a base of the automorphisms of D,, and hence of
the automorphisms of D,’. By the definability of D,:

Theorem. Every (nontrivial) automorphism of D, induces a
(nontrivial) automorphism of De.

In the reverse direction we use a version of the J. Richter's
Theorem about automorphisms of D':

Theorem. Every automorphism of D.' is the identity on the cone
above 0(64).
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Global definability and automorphisms

Now consider an automorphism ¢ of D.'. Given a sequence A let
JG ={x€De:dy(A) <, x}.
Clearly A=, B <= J§ = Jg. Hence J§ = J;;(A).

Notice that for every sequence A, if n > 4 then
p(de(Pn(A))) = de(Pn(A))

Given a sequence A, construct the sequence BB so that
By € ¢(de(Ap)),- .-, B3 € o(de(A3)) and for n > 4, B, = P,(A).

Lemma. Jg = {o(x)[x € J§}. |

Let ®(d,(A)) = d(B), where B is constructed as above. |




Global definability and automorphisms

Theorem. The mapping ® is well defined and has the following
properties:

Q (Vx € D¢)(®(x) = ¢(x)).

@ & is an automorphism of D,,’.

Denote by Aut(D.') and Aut(D,,’) respectively the group of the
automorphisms of D,/ and D, .
For ¢ € Aut(D.) let A(p) = ®, where ® is defined as above.

Theorem. A is an isomorphism from Aut(D,') to Aut(D,’). )
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Global definability and automorphisms

Theorem. The mapping ® is well defined and has the following
properties:

Q (Vx € D¢)(®(x) = ¢(x)).

@ & is an automorphism of D,,’.

Denote by Aut(D.') and Aut(D,,’) respectively the group of the
automorphisms of D,/ and D, .
For ¢ € Aut(D.) let A(p) = ®, where ® is defined as above.

Theorem. A is an isomorphism from Aut(D,') to Aut(D,’). |

By a result of Kalimullin the jump is first order definable in De.

Theorem. The groups of the automorphisms of Do and D, are
isomorphic.
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The local theory

Definition.(Lachlan and Shore) A recursive sequence of finite sets
{B®} is a good approximation of the set B if it satisfies the
following two conditions:

(G1) (Vn)(3s)(B | n C B* C B).
(G2) (Vn)(3s)(Vt >s)(B* C B= B | nC B?").

The numbers s s.t. B® C B are called good stages of the
approximation B*.

Definition. Let B = {By}«<. be a sequence of sets of natural
numbers. A sequence {B}} of finite sets recursive in k and s is a
good approximation of B if the following conditions are satisfied:

(i) For all k, B; is a good approximation of Bj.
(i) If r < k then the good stages of B} are good stages of B;.
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The local theory

Density

Theorem. Every w-enumeration degree below 0/, contains a
sequence A which has a good approximation.

Theorem. The partial ordering of the w-enumeration degrees
below 0/, is dense. \

Theorem. There is no minimal w-enumeration degree J
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The local theory

The degrees o,

Definition. Given n > 1, set 0, = I (0,,(""Y). J

Forn>1, o, =d,(0,...,0,0(*+D ¢(+2) ) Hence
———

n

(Yn>1)(0n > 0nt1)-

Ivan N. Soskov The w-enumeration degrees



The local theory

The degrees o,

Definition. Given n > 1, set 0, = I (0,,(""Y). J
Forn>1, o, =d,(0,...,0,0(*+D ¢(+2) ) Hence
N——

n

(Vn > 1)(0n > ont1).

Theorem. D, o1, 0] = D,[0,, 0.']. |

Theorem. For every n > 1, Dy[0ns1,0n] = De[0(", 0,("+1)]. J

Theorem. For every n > 1, D,[0,0,] = D,[0(", 0("+1)], J
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Global definability and automorphi
The local theory

= De[0e5 0]

= De[0¢, 0]

~ D,[0/,0"]

)
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The local theory

The almost zero elements

Definition. A degree a is almost zero (a.z.) if (Vn)(a <, on). |

Theorem. A degree a < 0/, is a.z. iff there exists A € a s.t.
(Vn)(An <e J2(0))-

There exist a.z. elements below 0, which are not equal to 0.

Corollary.
@ The a.z. elements below 0/, form an ideal.
@ For every n and every a.z. degree a, the least solution of the
equation x(") = a(™ s equal to a.
© Ifa+#0, isa.z then (Vn)(0" <, a( <, 0",
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The jump
Global definability and automorphisr
The local theory

Na.

X /

~
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The local theory

The classes H and L

Definition. Let n > 1. An w-enumeration degree a < 0, is high n
if a(M = 0,("1) The degree a is low n if a(”) = 0,(".

Denote by H, the set of all high n degrees and by L, set of all low
n degrees. Set

H=|JHn L=|JLlnand I ={a<,0, :a¢ (HUL)}.

n>1 n>1
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The local theory

The classes H and L

Definition. Let n > 1. An w-enumeration degree a < 0, is high n
if a(M = 0,("1) The degree a is low n if a(”) = 0,(".

Denote by H, the set of all high n degrees and by L, set of all low
n degrees. Set

H=|JHn L=|JLlnand I ={a<,0, :a¢ (HUL)}.

n>1 n>1

Theorem. Leta <, 0. Then
Q@ acH < (Va.z. b)(b <, a);
Q@ acl < (Vaz. b)(b<,a=b=0,).
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of the enumeration reducibility

the omega-enum
The jump operator
Global definability and autc
The local theory
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The local theory

Embedding partial orderings

Theorem. Let a < b < 0/,. Then every countable partial ordering
can be embedded in D,[a, b]. J
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The local theory

Embedding partial orderings

Theorem. Let a < b < 0/,. Then every countable partial ordering
can be embedded in D,[a, b]. \

Definition. The w-enumeration degrees a and b are a Kalimullin
pair over c iff (Vx <0/ )[(aVeVx)A(bVecVx)=cVx]. \
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The local theory

Embedding partial orderings

Theorem. Let a < b < 0/,. Then every countable partial ordering
can be embedded in D,[a, b].

Definition. The w-enumeration degrees a and b are a Kalimullin
pair over c iff (Vx <0/ )[(aVeVx)A(bVecVx)=cVx].

Theorem. There exists a family A; of sequences uniformly below
(0, such that for all i, d,,(A;) is a.z. and for any r.e. sets U and V,
d.(Bicy Ai) and d,(B;c\ Ai) is a Kalimullin pair over
dW(@ieUmV Ai).
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The local theory

Embedding partial orderings

Theorem. Let a < b < 0/,. Then every countable partial ordering
can be embedded in D,[a, b].

Definition. The w-enumeration degrees a and b are a Kalimullin
pair over c iff (Vx <0/ )[(aVeVx)A(bVecVx)=cVx].

Theorem. There exists a family A; of sequences uniformly below
(0, such that for all i, d,,(A;) is a.z. and for any r.e. sets U and V,
du(Picy Ai) and d,(Bjc\ Ai) is a Kalimullin pair over
dW(@ieUmV Ai).

Corollary. The lattice £ of the r.e. sets is embeddable in the a.z.
degrees preserving the least element.
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The local theory

Local definability

Theorem. For every n > 1, {o,} is first order definable in
D,[0.,0.].

Notice that ifa <, 0,/ thena € H, «<— o, <, a and
acl, < o,Na=0,.

Corollary.

© For every n, the classes H, and L,, are first order definable in
D,[0.,0.].

@ The ¥, enumeration degrees are first order definable in
D,[0,,0.].

© There exists an interpretation of True Arithmetic in
D,[0., 0]
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The local theory

Thank you!
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