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Overview

We look at ideals in the Turing degrees.

• We give some motivation and algebraic background.

• Greenberg, Hirschfeldt and N. study natural examples:
K -trivial, strongly jump traceable, in between, . . .

• Barmpalias and N. address the following question:
Let I be a proper ideal in the c.e. degrees with a certain type of
effective presentation.
What can one say about upper bounds of I in the c.e. degrees?

For instance, each proper Σ0
3 ideal has a low2 upper bound.
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Part I

Background on ideals
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The ideal lattice of an usl U

• Let (U,≤ ∨) be an uppersemilattice (usl).

• A set I ⊆ U is an ideal if I is closed downwards and under the join
operation ∨.

• An upper bound of an ideal I is a degree b such that I ⊆ [0, b].

Some Facts:
• The set of ideals of U is a lattice, where the meet of I, J is the

intersection, and the join of I, J is the ideal generated by I ∪ J.
• An ideal I is called proper if I 6= U.
• Each u ∈ U determines the ideal {x : x ≤ u}, called a principal

ideal.
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Why look at ideals of degree structures?

• Ideal lattices are natural extensions of the degree structure. They
can have nice extra features such as intermediate definable
elements. For instance the lattice of Σ0

k ideals of the c.e. degrees for
k ≥ 6 has such a l definable element: the ideal of non-cuppable
degrees. This is definable because it’s the infimum of all maximal
ideals.

• to study quotient structures.

• There are many examples, because several algebraic operators in
usl turn sets into ideals.

• some important classes are ideals, such as “cappable” in the c.e.
degrees, “K -trivial” in the ∆0

2, and the c.e. degrees.

• Ideals form an abstract framework for some lowness properties.
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Operators to turn sets into ideals

Given usl (U,≤ ∨) and a set S ⊆ U.
The following are ideals:

• The ideal generated by S;

• the lower bounds of S:

{x ∈ U : ∀d ∈ S x ≤ d};

• if S is already downward closed: the core of S.

{x ∈ U : ∀d ∈ S [x ∨ d ∈ S]}.

If U has a largest element 1, then the core of U − {1} is

{x : ∀d < 1 [x ∨ d < 1]} = non-cuppable.
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C.e. degrees: definability and global properties

• Several investigations of ideals have focussed on their definability,
and on the global properties of ideal lattices.

• A few proper ideals are known to be first-order definable without
parameters in the c.e. degrees: the cappable degrees, and its
subideal, the non-cuppable degrees.

• Nies (2001) showed that one can definably map from a suitable
coded standard model of arithmetic onto any proper end segment.
This implies that a definable set generates a definable ideal.

• Applying this, Yang Yue and Yu Liang found a few more examples of
definable ideals: for instance, the ideal generated by the
non-bounding degrees.
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Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.
• Each principal ideal is Σ0

4.
• For k ≥ 4, the Σ0

k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.
• Each principal ideal is Σ0

4.
• For k ≥ 4, the Σ0

k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.

If ΘI is Σ0
k etc. we say that I is a Σ0

k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.
• Each principal ideal is Σ0

4.
• For k ≥ 4, the Σ0

k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.
• Each principal ideal is Σ0

4.
• For k ≥ 4, the Σ0

k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.

• Each principal ideal is Σ0
4.

• For k ≥ 4, the Σ0
k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.
• Each principal ideal is Σ0

4.

• For k ≥ 4, the Σ0
k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Fact
• The class of uniformly generated ideals is closed under join of

ideals.
• Each principal ideal is Σ0

4.
• For k ≥ 4, the Σ0

k ideals form a lattice.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 8 / 39



Classes of ideals in the c.e. degrees

For ideals, we have the implications

Σ0
3 =⇒ uniformly generated =⇒ Σ0

4.

It is not hard to show that the converse implications fail:

• Let a < 1 be a non-low2 c.e. degree. Then [0, a] is u.g. but not Σ0
3.

• If b 6= 0, then the principal ideal [0, b] has a maximal subideal I that
is ∆0

4(b). Now choose b low. Then I is Σ0
4 but not u.g. as we’ll see

later.
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Part II

Ideals via randomness
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Strongly jump traceable sets

• An order function is a function h : N → N that is computable,
nondecreasing, and unbounded.

• A c.e. trace with bound h is a uniformly c.e. sequence (Tx)x∈N
such that |Tx | ≤ h(x) for each x .

• Let JA(e) be the value of the A-jump at e, namely, JA(e) ' ΦA
e (e).

• The set A is called strongly jump traceable if for each order
function h, there is a c.e. trace (Tx)x∈N with bound h such that,
whenever JA(x) it is defined, we have

JA(x) ∈ Tx

(Figueira, Nies, Stephan, 2004).
• SJTc.e. will denote the class of c.e. strongly jump traceable sets.
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Definition of cost functions

Definition
A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.

We say that c is monotonic if c(x , s) is nonincreasing in x , and
nondecreasing in s.

When building a computable approximation of a ∆0
2 set A, we view

c(x , s) as the cost of changing A(x) at stage s.
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Obeying a cost function

We want to make the total cost of changes, taken over all x , finite.

Definition

The computable approximation (As)s∈N obeys a cost function c if

∞ >
∑

x ,s c(x , s) [[x < s & x is least s.t. As−1(x) 6= As(x)]].

We write A |= c (A obeys c) if some computable approximation of A
obeys c.
We write Models(c) for the c.e. sets A that obey c. For monotonic c,
this class is closed under ⊕.
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We write A |= c (A obeys c) if some computable approximation of A
obeys c.
We write Models(c) for the c.e. sets A that obey c. For monotonic c,
this class is closed under ⊕.
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Basic existence theorem

We say that a cost function c satisfies the limit condition if

limx supsc(x , s) = 0.

Theorem (Kučera, Terwijn 1999; D,H,N,S 2003; . . .)

If a cost function c satisfies the limit condition, then some simple set A
obeys c.
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The ideal I(Y )

For a ∆0
2 set Y , let

I(Y ) = {A : Ais c.e. & A ≤T Y}

• I(Y ) induces an ideal in the c.e. degrees.

• By Kučera’s Theorem, if the ∆0
2 set Y is ML-random then I(Y )

contains a promptly simple set.

• [Greenberg, N.] For each ∆0
2 set Y there is a cost function cY with

the limit condition such that

A |= cY & Y ML-random ⇒ A ≤T Y .

That is, Models(cY ) ⊆ I(Y ) for ML-random Y .
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Basis Theorems

Recall: I(Y ) = {A c.e. : A ≤T Y};
Models(c) is the class of c.e. sets A such that A obeys c.

Theorem
Let P be a non-empty Π0

1 class (such as a class of ML-randoms).

Let c be a monotonic cost function with the limit condition.

(i) [N.] There is a ∆0
2 set Y ∈ P such that Models(c) 6⊆ I(Y ) .

(ii) [Greenberg, Hirschfeldt, N]
There is a ∆0

2 set Z ∈ P such that I(Z ) ⊆ Models(c).

In (i) one builds Y ∈ P and a c.e. set A |= c such that A 6≤T Y .
(ii) says that for each c.e. set A ≤T Z we have A |= c.
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Diamond Classes
2N denotes Cantor space with the uniform (coin-flip) measure.

We define ideals in the c.e. degrees as the lower bounds of classes of
ML-random sets.
For a null class H ⊆ 2N, we let

H♦ = the c.e. sets Turing below each ML-random set in H.

∅'the class  H

computable sets

H     = the c.e. sets T-below
all sets in  H ∩ MLR
♢K-trivial sets
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∅'the class  H

computable sets

H     = the c.e. sets T-below
all sets in  H ∩ MLR
♢K-trivial sets

• The larger H is, the smaller is H♦.
• H♦ induces an ideal in the computably enumerable Turing degrees.
• (Hirshfledt/Miller) For each null Σ0

3 class H, there is a promptly
simple set in H♦.

• In the interesting case that there is a ML-random set Y 6≥T ∅′ in H,
we have H♦ ⊆ base for ML-random (= K -trivial).
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Lowness, Highness

For a set X , we let X ′ denote the halting problem relative to X .
• Recall that Z ⊆ N is low if Z ′ ≤T ∅′, and Z is high if ∅′′ ≤T Z ′.

• These classes are “too big” in this context: we have

(low)♦ = (high)♦= computable.

(For instance, (high)♦= computable because there is a minimal pair
of high ML-random sets.)

• So we will try somewhat smaller classes, replacing ≤T by the
stronger truth-table reducibility ≤tt.
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Diamond classes coinciding with SJTc.e.

Definition (Mohrherr 1986)
A set Z is superlow if Z ′ ≤tt ∅′.

Z is superhigh if ∅′′ ≤tt Z ′.

Theorem (Greenberg, Hirschfeldt and Nies, to appear)
A c.e. set A is strongly jump traceable
⇐⇒ A is Turing below each superlow ML-random set
⇐⇒ A is Turing below each superhigh ML-random set .
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Diagram: SJTc.e. means computed by many oracles

∅'

superhigh

SJT   = (superlow)   =(superhigh)♢ ♢

superlow

K-trivial
computable

c.e.
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SJTs preserve superlowness
Remember that in an usl U, the core of S ⊆ U is

{x ∈ U : ∀d ∈ S [x ∨ d ∈ S]}.

As a corollary of SJTc.e. ⊆ (superlow)♦, we have that (at least on the
c.e. sets), SJT is contained in the core of the superlow sets.

Theorem (Greenberg and Nies (2008))
Suppose the c.e. set A is strongly jump traceable. Then
(∗) ∀X superlow [X ⊕ A is superlow].

This gives a new proof of Diamondstone’s result.

Question
Is (∗) a characterization of SJTc.e.?
Is the ideal induced by (∗) at least contained in the K -trivials?

If we restrict (∗) to c.e. sets X , then it properly contains SJTc.e.

(Diamondstone and Ng, to appear).
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Open questions on ideals between SJTc.e. and
K -trivial

No natural ideals are currently known to lie properly between SJTc.e.

and K -trivial

• A good candidate is (AED)♦.

• Here AED is the class of almost everywhere dominating sets D of
Dobrinen and Simpson: for almost all sets X , each function f ≤T X
is dominated by a function g ≤T D.

• For the highness properties, there are proper implications

Turing-complete ⇒ AED ⇒ superhigh.
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(AED)♦ properly contains SJTc.e.

• For the corresponding diamond classes, Greenberg and Nies
proved that SJTc.e. is properly contained in (AED)♦.

• They built a single benign cost function c such that A |= c implies
A ∈(AED)♦.

• However, (AED)♦ may coincide with K -trivial.

• This would imply that the classes ML-coverable and
ML-noncuppable also coincide with K -trivial.
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Classes of c.e. sets between SJTc.e. and K -trivial

K-trivial

ML-coverable ML-noncuppable

AED♢

SJT

(The dashed arrows may be coincidences.)
• A is ML-coverable if A ≤T Y for some ML-random Y 6≥T ∅′.
• A is ML-noncuppable if
∅′ ≤T A⊕ Y for ML-random Y implies ∅′ ≤T Y .
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Inside SJTc.e.

Work in progress with Diamondstone and Hirschfeldt shows:
The class

(ωω-c.e.)♦

is a nontrivial proper subclass of SJTc.e..
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BREAK
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Part III

Upper bounds for ideals (joint with G. Barmpalias)
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The leading question

We study ideals in the c.e. Turing degrees.
The leading question is the following.

Let I be a proper ideal with a certain type of effective presentation.

What can we say about upper bounds of I in the c.e. degrees?
Motivation: often I is a lowness property. In this case we would expect
results on upper bounds.
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Recall: Effective presentations of ideals in the c.e.
degrees

There are two interrelated approaches to effectively presenting an
ideal I in the c.e. degrees.

(a) Require that I is generated by a uniformly c.e. sequence.
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I} within
the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Σ0
3 =⇒ uniformly generated =⇒ Σ0

4.
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More on the leading question

• By the Thickness Lemma every proper u.g. ideal has an incomplete
upper bound.

• What can we say about upper bounds of a proper Σ0
3 ideal?

• The Π0
4 ideal of cappable degrees has no incomplete upper bound.

• How about bounds for a proper Σ0
4 ideal?
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Bounds for proper Σ0
3 ideals

Theorem
Each proper Σ0

3 ideal I in the c.e. degrees has a low2 upper bound.

In particular, there is a low2 c.e. degree above all the K -trivials. We
say u.c.e. sequence (An)n∈N is uniformly low2 if from n one can
compute index for Turing reduction of (

⊕
i≤n Ai)

′′ to ∅′′.

Uniform Low2-ness Lemma
Each uniformly c.e. sequence (Yk )k∈N with degrees in a proper Σ0

3
ideal I is uniformly low2.

• This uniform low2-ness allows us to code all of I into an upper
bound, while keeping this bound low2.

• We have a ∅′′ construction with a tree of strategies to read a
low2-ness index for the upper bound off the true path.
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3
ideal I is uniformly low2.

• This uniform low2-ness allows us to code all of I into an upper
bound, while keeping this bound low2.

• We have a ∅′′ construction with a tree of strategies to read a
low2-ness index for the upper bound off the true path.
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Proof of Uniform Low2ness Lemma

Uniform Low2-ness Lemma
Each uniformly c.e. sequence (Yk )k∈N with degrees in a proper Σ0

3
ideal I is uniformly low2.

We show that the Π0
2(Yk ) complete sets TotYk are uniformly Σ0

3.

Since I is a proper Σ0
3 ideal, it suffices to define a uniformly c.e.

sequence (Uk ,n) such that for each k , n we have

if n ∈ TotYk then deg(Uk ,n) ∈ I
if n 6∈ TotYk then Uk ,n =∗ ∅′.

This is done by attempting to enumerate ∅′ into the Uk ,n. At stage s, for
each n, k < s:

if v ∈ ∅′s and ΦYk
n (v)↑ [s], enumerate v into Uk ,n.
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Bounds for proper Σ0
4 ideals

Theorem
Each proper Σ0

4 ideal I in the c.e. degrees has an incomplete upper
bound.

.

• Let I be the c.e. sets with degree in I.
• There is a high c.e. set H of non-cuppable degree (Harrington and

Miller 1981).
• We may assume that H is in I, else throw it in and remain proper.
• The construction now works because I is only Σ0

3(H).
• It is a ∅′′ construction, but no explicit tree of strategies is needed. It

suffices to use hat computations.
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The requirements
Since H ′ ≥T ∅′′, we have Π0

3 ⊆ Π0
2(H), and therefore Σ0

4 ⊆ Σ0
3(H).

Hence there exists a uniformly c.e. sequence of operators (Ve,n) such
that

We ∈ I ⇐⇒ ∃n V H
e,n = N.

In order to build an incomplete upper bound, we build B meeting the
requirements

C〈e,n〉 : V H
e,n = N ⇒ We ≤T B ⊕ H.

We make B Turing incomplete, by meeting the requirements

Nm : ∅′ = ΦB
m ⇒ ∃k∃e0, . . . , ek−1[∅′ ≤T ⊕i<kWei ⊕ H &∀i Wei ∈ I].

This condition says that, if B is complete, then the ideal given by I is
not proper. The sets Wei , i < k , will be the members of I that are
coded into B through higher priority requirements.
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Prime ideals

Ideal I of usl U is called prime if x , y 6∈ I ⇒ ∃z ≤ x , y z 6∈ I.

The cappable degrees form a Π0
4 prime ideal in the c.e. degrees.

We show that this is optimal, answering a question of Calhoun (1990).

Corollary

No proper Σ0
4 ideal is prime.

For, pick an incomplete upper bound of the ideal. Welch 1981 shows
that there is a minimal pair of degree none of which are below this
upper bound.
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Density of partial orders of ideals

Recall: each principal ideal [0, b], where b 6= 0, has a maximal
subideal I that is ∆0

4(b).

Choosing b low, this shows that the lattice of Σ0
4 ideals fails to be

dense.
In contrast, we have:

Theorem
The partial order of Σ0

3 ideals in the c.e. degrees is dense.

• In fact if J is a proper Σ0
3 ideal in the c.e. degrees, then each degree

d /∈ J splits in the quotient usl.
• This uses the Uniform Low2-ness Lemma combined with a Sacks

Splitting type technique.
• We also see now that I above is not uniformly generated: else it

would already be Σ0
3.
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Some open questions on ideals

• Is every Σ0
4 ideal I the intersection of the principal ideals it is

contained in? (This would strengthen our result that I has an
incomplete upper bound.)

• For k ≥ 4, is the class of principal ideals definable in the lattice of Σ0
k

ideals? Natural elementary differences for k ≥ 4?

• Let K be the ideal of K -trivial degrees. Are there c.e. degrees a, b
such that K = [0, a] ∩ [0, b]?
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