Ideals in the Turing degrees
Examples via randomness; upper bounds

André Nies
The University of Auckland

August 7, 2009

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009

1/39



Overview

We look at ideals in the Turing degrees.

e We give some motivation and algebraic background.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 2/39



Overview

We look at ideals in the Turing degrees.

e We give some motivation and algebraic background.

e Greenberg, Hirschfeldt and N. study natural examples:
K-trivial, strongly jump traceable, in between, . ..

André Nies The University of Auckland ()

Ideals in the Turing degrees

August 7, 2009 2/39



Overview

We look at ideals in the Turing degrees.

e We give some motivation and algebraic background.

e Greenberg, Hirschfeldt and N. study natural examples:
K-trivial, strongly jump traceable, in between, . ..

e Barmpalias and N. address the following question:

Let / be a proper ideal in the c.e. degrees with a certain type of
effective presentation.

André Nies The University of Auckland () Ideals in the Turing degrees

August 7, 2009 2/39



Overview

We look at ideals in the Turing degrees.

e We give some motivation and algebraic background.

e Greenberg, Hirschfeldt and N. study natural examples:
K-trivial, strongly jump traceable, in between, . ..

e Barmpalias and N. address the following question:
Let / be a proper ideal in the c.e. degrees with a certain type of
effective presentation.
What can one say about upper bounds of / in the c.e. degrees?

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 2/39



Overview

We look at ideals in the Turing degrees.

e We give some motivation and algebraic background.

e Greenberg, Hirschfeldt and N. study natural examples:
K-trivial, strongly jump traceable, in between, . ..

e Barmpalias and N. address the following question:
Let / be a proper ideal in the c.e. degrees with a certain type of
effective presentation.

What can one say about upper bounds of / in the c.e. degrees?
For instance, each proper &3 ideal has a low, upper bound.
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Part |

Background on ideals
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The ideal lattice of an usl U

e Let (U, < V) be an uppersemilattice (usl).

e Aset/C Uis an ideal if /is closed downwards and under the join
operation V.

e An upper bound of an ideal / is a degree b such that / C [0, b].
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The ideal lattice of an usl U

e Let (U, < V) be an uppersemilattice (usl).

e Aset/C Uis an ideal if /is closed downwards and under the join
operation V.

e An upper bound of an ideal / is a degree b such that / C [0, b].

Some Facts:

e The set of ideals of U is a lattice, where the meet of /, J is the
intersection, and the join of /, J is the ideal generated by /U J.

e Anideal / is called proper if / £ U.

e Each u € U determines the ideal {x: x < u}, called a principal
ideal.
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e Ideal lattices are natural extensions of the degree structure. They
can have nice extra features such as intermediate definable
elements.
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Why look at ideals of degree structures?

Ideal lattices are natural extensions of the degree structure. They
can have nice extra features such as intermediate definable
elements. For instance the lattice of =) ideals of the c.e. degrees for
k > 6 has such a | definable element: the ideal of non-cuppable
degrees. This is definable because it’s the infimum of all maximal
ideals.

to study quotient structures.

There are many examples, because several algebraic operators in
usl turn sets into ideals.

some important classes are ideals, such as “cappable” in the c.e.
degrees, “K-trivial” in the A, and the c.e. degrees.

Ideals form an abstract framework for some lowness properties.
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Operators to turn sets into ideals

Givenusl (U, <V)andaset S C U.
The following are ideals:

e The ideal generated by S;
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Givenusl (U, <V)andaset S C U.
The following are ideals:

e The ideal generated by S;
e the lower bounds of S:

{xe U: Vd € Sx < d};
e if Sis already downward closed: the core of S.

{xe U: Vd € S[xvde 8]}
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Operators to turn sets into ideals

Givenusl (U, <V)andaset S C U.
The following are ideals:

e The ideal generated by S;
e the lower bounds of S:
{xeU: vd € Sx < d};
e if Sis already downward closed: the core of S.
{xe U: vd € S[xVvde S|}

If U has a largest element 1, then the core of U — {1} is

{x: ¥d < 1[xVvd < 1]} = non-cuppable.
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C.e. degrees: definability and global properties

e Several investigations of ideals have focussed on their definability,
and on the global properties of ideal lattices.
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C.e. degrees: definability and global properties

e Several investigations of ideals have focussed on their definability,
and on the global properties of ideal lattices.

e A few proper ideals are known to be first-order definable without
parameters in the c.e. degrees: the cappable degrees, and its
subideal, the non-cuppable degrees.

¢ Nies (2001) showed that one can definably map from a suitable
coded standard model of arithmetic onto any proper end segment.
This implies that a definable set generates a definable ideal.

e Applying this, Yang Yue and Yu Liang found a few more examples of
definable ideals: for instance, the ideal generated by the
non-bounding degrees.
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Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal / in the c.e. degrees.
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We say that / is uniformly generated.
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Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal / in the c.e. degrees.

(a) Require that / is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that / is uniformly generated.

(b) Describe the index set ©/ = {e: the degree of W, is in /} within
the arithmetical hierarchy.
If ©/is ¥, etc. we say that / is a =) ideal.

Fact

e The class of uniformly generated ideals is closed under join of
ideals.
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Effective presentations of ideals in the c.e. degrees

There are two interrelated approaches to effectively presenting an
ideal / in the c.e. degrees.

(a) Require that / is generated by a uniformly c.e. sequence (possibly
with further conditions).
We say that / is uniformly generated.

(b) Describe the index set ©/ = {e: the degree of W, is in /} within
the arithmetical hierarchy.
If ©/is ¥, etc. we say that / is a =) ideal.

Fact

e The class of uniformly generated ideals is closed under join of
ideals.

e Each principal ideal is .
e Fork > 4, the ©¥ ideals form a lattice.
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Classes of ideals in the c.e. degrees

For ideals, we have the implications

>3 = uniformly generated — .
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Classes of ideals in the c.e. degrees

For ideals, we have the implications
>3 = uniformly generated — .

It is not hard to show that the converse implications fail:
e Leta < 1 be a non-low; c.e. degree. Then [0,a] is u.g. but not 3.

e If b # 0, then the principal ideal [0, b] has a maximal subideal | that
is A%(b). Now choose b low. Then Iis £ but not u.g. as we'll see
later.
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Part I

Ideals via randomness
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Strongly jump traceable sets

e An order function is a function h : N — N that is computable,
nondecreasing, and unbounded.
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e A c.e. trace with bound h is a uniformly c.e. sequence (Tx)xen
such that | x| < h(x) for each x.
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Strongly jump traceable sets

e An order function is a function h: N — N that is computable,
nondecreasing, and unbounded.

e A c.e. trace with bound h is a uniformly c.e. sequence (Tx)xen
such that | Tx| < h(x) for each x.

e Let J%(e) be the value of the A-jump at e, namely, J%(e) ~ ®4(e).

e The set A is called strongly jump traceable if for each order
function h, there is a c.e. trace (Tx)xen With bound h such that,
whenever J(x) it is defined, we have

JA(X) € Ty

(Figueira, Nies, Stephan, 2004).
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Definition of cost functions

Definition
A cost function is a computable function

c:NxN—-{xeQ: x>0}

We say that ¢ is monotonic if c(x, s) is nonincreasing in x, and
nondecreasing in s.
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Definition of cost functions

Definition
A cost function is a computable function

c:NxN—-{xeQ: x>0}

We say that ¢ is monotonic if c(x, s) is nonincreasing in x, and
nondecreasing in s.

When building a computable approximation of a Ag set A, we view
c(x, s) as the cost of changing A(x) at stage s.
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Obeying a cost function

We want to make the total cost of changes, taken over all x, finite.
Definition

The computable approximation (As)scx obeys a cost function c if

00> >, o C(X,8)[x < s& xisleast s.t. As_1(X) # As(x)].
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Obeying a cost function

We want to make the total cost of changes, taken over all x, finite.
Definition

The computable approximation (As)scx obeys a cost function c if
00> >, o C(X,8)[x < s& xisleast s.t. As_1(X) # As(x)].

We write A = ¢ (A obeys c) if some computable approximation of A
obeys c.
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Obeying a cost function

We want to make the total cost of changes, taken over all x, finite.
Definition
The computable approximation (As)scx obeys a cost function c if

00> >, o C(X,8)[x < s& xisleast s.t. As_1(X) # As(x)].

We write A = ¢ (A obeys c) if some computable approximation of A
obeys c.

We write Models(c) for the c.e. sets A that obey c. For monotonic c,
this class is closed under .
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Basic existence theorem

We say that a cost function c¢ satisfies the limit condition if

limy supgc(x, s) = 0.
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Basic existence theorem

We say that a cost function c¢ satisfies the limit condition if

limy supgc(x, s) = 0.

Theorem (Kucera, Terwijn 1999; D,H,N,S 2003; .. )

If a cost function c satisfies the limit condition, then some simple set A
obeys c.
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The ideal Z(Y)

Fora AJ set Y, let

I(Y)={A: Aisce. & A<T Y}
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The ideal Z(Y)
Fora AS set Y, let

I(Y)={A: Aisce. & A<T Y}
e 7(Y) induces an ideal in the c.e. degrees.

e By Kucera’s Theorem, if the A9 set Y is ML-random then Z(Y)
contains a promptly simple set.

e [Greenberg, N.] For each Ag set Y there is a cost function ¢y with
the limit condition such that

A= cy & Y ML-random = A<t Y.
That is, Models(cy) C Z(Y) for ML-random Y.
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Basis Theorems

Recall: Z(Y) = {Ace. : A<7 Y};
Models(c) is the class of c.e. sets A such that A obeys c.

Theorem
Let P be a non-empty I'I? class (such as a class of ML-randoms).
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Basis Theorems

Recall: Z(Y) = {Ace. : A<7 Y};
Models(c) is the class of c.e. sets A such that A obeys c.
Theorem

Let P be a non-empty N9 class (such as a class of ML-randoms).
Let ¢ be a monotonic cost function with the limit condition.

(i) [N.] There is a AJ set Y € P such that Models(c) Z Z(Y) .
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Basis Theorems

Recall: Z(Y) = {Ace. : A<7 Y};
Models(c) is the class of c.e. sets A such that A obeys c.

Theorem

Let P be a non-empty N9 class (such as a class of ML-randoms).
Let ¢ be a monotonic cost function with the limit condition.

(i) [N.] There is a AJ set Y € P such that Models(c) Z Z(Y) .

(i) [Greenberg, Hirschfeldt, N]
There is a A set Z P such that Z(Z) C Models(c).

In (i) one builds Y €« Pandac.e.set A=csuchthat A< Y.
(i) says that for each c.e. set A <; Z we have A |~ c.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 16/39



Diamond Classes

2" denotes Cantor space with the uniform (coin-flip) measure.
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Diamond Classes

2" denotes Cantor space with the uniform (coin-flip) measure.

We define ideals in the c.e. degrees as the lower bounds of classes of

ML-random sets.
For a null class H C 2", we let

H® = the c.e. sets Turing below each ML-random set in .

K-trivial sets ’ e

HY = the c.e. sets T-below
computable sets all setsin H N MLR

André Nies The University of Auckland ()

Ideals in the Turing degrees August 7, 2009

17/39



K-trivial sets

H" = the c.e. sets T-below
computable sets all setsin H N MLR
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K-trivial sets e

computable s'ets all setsin H N MLR

e The larger 7 is, the smaller is .
e 7 induces an ideal in the computably enumerable Turing degrees.
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K-trivial sets e

computable s—ets all setsin H N MLR

e The larger 7 is, the smaller is .

e 7 induces an ideal in the computably enumerable Turing degrees.

e (Hirshfledt/Miller) For each null Zg class H, there is a promptly
simple set in +°.
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HY = the c.e. sets T-below
computable sets all setsin H N MLR

K-trivial sets

The larger 7 is, the smaller is .

H® induces an ideal in the computably enumerable Turing degrees.
(Hirshfledt/Miller) For each null Zg class H, there is a promptly
simple set in +°.

In the interesting case that there is a ML-random set Y % (/' in H,
we have H¢ C base for ML-random (= K-trivial).
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Lowness, Highness

For a set X, we let X’ denote the halting problem relative to X.
e Recallthat Z C Nislow if Z/ <+ (/, and Z is high if ) < Z'.

e These classes are “too big” in this context: we have

(low)® = (high)®= computable.

(For instance, (high)®= computable because there is a minimal pair
of high ML-random sets.)
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Lowness, Highness

For a set X, we let X’ denote the halting problem relative to X.
e Recallthat Z C Nislow if Z/ <+ (/, and Z is high if ) < Z'.

e These classes are “too big” in this context: we have

(low)® = (high)®= computable.

(For instance, (high)®= computable because there is a minimal pair
of high ML-random sets.)

e So we will try somewhat smaller classes, replacing <7 by the
stronger truth-table reducibility <j.
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Diamond classes coinciding with SJT; ¢,

Definition (Mohrherr 1986)
A set Z is superlow if Z" < (/. J
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Diamond classes coinciding with SJT; ¢,

Definition (Mohrherr 1986)
A set Z is superlow if Z' <4 (/. Z is superhigh if (/" < Z'. J
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Diamond classes coinciding with SJT; ¢,

Definition (Mohrherr 1986)
A set Z is superlow if Z/ <y (. Z is superhigh if (/" <, Z'.

Theorem (Greenberg, Hirschfeldt and Nies, to appear)
A c.e. set A is strongly jump traceable

<= A s Turing below each supedow ML-random set
<~ A s Turing below each superigh ML-random set .
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Diagram: SJT. .. means computed by many oracles

computable

K-trivial

SIT, .= (Sttperlow)O =(superhl'gh)O
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SJTs preserve superlowness
Remember that in an usl U, the core of S C U is

{xe U: vd € S[xvdeS]}.

As a corollary of SJT,. C (superlow)®, we have that (at least on the
c.e. sets), SJT is contained in the core of the superlow sets.

Theorem (Greenberg and Nies (2008))

Suppose the c.e. set A is strongly jump traceable. Then
() VX superlow [X © A is superlow].
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Theorem (Greenberg and Nies (2008))

Suppose the c.e. set A is strongly jump traceable. Then
() VX superlow [X © A is superlow].

This gives a new proof of Diamondstone’s result.
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Theorem (Greenberg and Nies (2008))

Suppose the c.e. set A is strongly jump traceable. Then
() VX superlow [X © A is superlow].

This gives a new proof of Diamondstone’s result.

Question
Is (x) a characterization of SUT; ¢ ?
Is the ideal induced by (x) at least contained in the K -trivials?
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SJTs preserve superlowness
Remember that in an usl U, the core of SC U'is
{xe U: vd € S[xvdeS]}.

As a corollary of SJT,. C (superlow)®, we have that (at least on the
c.e. sets), SJT is contained in the core of the superlow sets.
Theorem (Greenberg and Nies (2008))

Suppose the c.e. set A is strongly jump traceable. Then
() VX superlow [X © A is superlow].

This gives a new proof of Diamondstone’s result.

Question
Is (x) a characterization of SUT; ¢ ?
Is the ideal induced by (x) at least contained in the K -trivials?

If we restrict (x) to c.e. sets X, then it properly contains SJT ¢.

Diamondstone and Nl to_ anne
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Open questions on ideals between SJT. . and
K-trivial

No natural ideals are currently known to lie properly between SJT. .
and K-trivial

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 23/39



Open questions on ideals between SJT. . and
K-trivial

No natural ideals are currently known to lie properly between SJT. .
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e A good candidate is (AED)?.

e Here AED is the class of almost everywhere dominating sets D of

Dobrinen and Simpson: for almost all sets X, each function f <; X
is dominated by a function g <7 D.
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Open questions on ideals between SJT. . and
K-trivial

No natural ideals are currently known to lie properly between SJT. .
and K-trivial

e A good candidate is (AED)?.

e Here AED is the class of almost everywhere dominating sets D of
Dobrinen and Simpson: for almost all sets X, each function f <; X
is dominated by a function g <7 D.

e For the highness properties, there are proper implications

Turing-complete = AED =- superhigh.
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(AED)® properly contains SJT..e.

e For the corresponding diamond classes, Greenberg and Nies
proved that SUT. .. is properly contained in (AED)?.
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(AED)® properly contains SJT..e.

e For the corresponding diamond classes, Greenberg and Nies
proved that SUT. .. is properly contained in (AED)?.

e They built a single benign cost function ¢ such that A |= ¢ implies
A €(AED).
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e For the corresponding diamond classes, Greenberg and Nies
proved that SUT. .. is properly contained in (AED)?.

e They built a single benign cost function ¢ such that A |= ¢ implies
A €(AED).

e However, (AED)® may coincide with K-trivial.
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(AED)® properly contains SJT..e.

For the corresponding diamond classes, Greenberg and Nies
proved that SUT. .. is properly contained in (AED)?.

They built a single benign cost function ¢ such that A |= ¢ implies
A €(AED)?.

However, (AED)¢ may coincide with K-trivial.

This would imply that the classes ML-coverable and
ML-noncuppable also coincide with K-trivial.
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Classes of c.e. sets between SJT. . and K-trivial

K-trivial
o~ *
ML-coverable ML-no}lcuppable
AN 4
AED®
SIT

(The dashed arrows may be coincidences.)
e Ais ML-coverable if A <t Y for some ML-random Y % (V.
e Ais ML-noncuppable if

() <+ A@ Y for ML-random Y implies (// < Y.
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Inside SJT; .

Work in progress with Diamondstone and Hirschfeldt shows:
The class

(w*-c.e.)®

is a nontrivial proper subclass of SJT;¢..
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BREAK
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Part

Upper bounds for ideals (joint with G. Barmpalias)
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The leading question

We study ideals in the c.e. Turing degrees.
The leading question is the following.
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The leading question is the following.

Let / be a proper ideal with a certain type of effective presentation.
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The leading question

We study ideals in the c.e. Turing degrees.
The leading question is the following.

Let / be a proper ideal with a certain type of effective presentation.

What can we say about upper bounds of / in the c.e. degrees?
Motivation: often /is a lowness property. In this case we would expect
results on upper bounds.
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Recall: Effective presentations of ideals in the c.e.
degrees

There are two interrelated approaches to effectively presenting an
ideal /in the c.e. degrees.
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Recall: Effective presentations of ideals in the c.e.
degrees

There are two interrelated approaches to effectively presenting an
ideal /in the c.e. degrees.

(a) Require that / is generated by a uniformly c.e. sequence.
We say that / is uniformly generated.
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Recall: Effective presentations of ideals in the c.e.
degrees

There are two interrelated approaches to effectively presenting an
ideal /in the c.e. degrees.

(a) Require that / is generated by a uniformly c.e. sequence.
We say that / is uniformly generated.

(b) Describe the index set ©/ = {e: the degree of W, is in [} within
the arithmetical hierarchy.
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(a) Require that / is generated by a uniformly c.e. sequence.
We say that / is uniformly generated.

(b) Describe the index set ©/ = {e: the degree of W, is in [} within
the arithmetical hierarchy.

If ©/is ©f etc. we say that / is a =) ideal.
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Recall: Effective presentations of ideals in the c.e.
degrees

There are two interrelated approaches to effectively presenting an
ideal /in the c.e. degrees.

(a) Require that / is generated by a uniformly c.e. sequence.
We say that / is uniformly generated.

(b) Describe the index set ©/ = {e: the degree of W, is in [} within
the arithmetical hierarchy.

If ©/is ©f etc. we say that / is a =) ideal.

>3 = uniformly generated — 3.
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Recall: Effective presentations of ideals in the c.e.
degrees

There are two interrelated approaches to effectively presenting an
ideal /in the c.e. degrees.

(a) Require that / is generated by a uniformly c.e. sequence.
We say that / is uniformly generated.

(b) Describe the index set ©/ = {e: the degree of W, is in [} within
the arithmetical hierarchy.

If ©/is ©f etc. we say that / is a =) ideal.

>3 = uniformly generated — 3.
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More on the leading question

By the Thickness Lemma every proper u.g. ideal has an incomplete
upper bound.

What can we say about upper bounds of a proper Zg ideal?

The ﬂg ideal of cappable degrees has no incomplete upper bound.
How about bounds for a proper ¥{ ideal?
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Bounds for proper X3 ideals

Theorem
Each proper Zg ideal I in the c.e. degrees has a low. upper bound. J
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Bounds for proper 3 ideals
Theorem

Each proper Zg ideal 1 in the c.e. degrees has a low, upper bound. J

In particular, there is a low, c.e. degree above all the K-trivials.
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Bounds for proper 3 ideals

Theorem

Each proper Zg ideal 1 in the c.e. degrees has a low, upper bound. J

In particular, there is a low, c.e. degree above all the K-trivials. We
say u.c.e. sequence (Ap)qcn is uniformly lows if from n one can
compute index for Turing reduction of (©,, A;)" to ()"
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Bounds for proper 3 ideals

Theorem
Each proper Zg ideal 1 in the c.e. degrees has a low, upper bound. J

In particular, there is a low, c.e. degree above all the K-trivials. We
say u.c.e. sequence (Ap)qcn is uniformly lows if from n one can
compute index for Turing reduction of (©,, A;)" to ()"

Uniform Low,-ness Lemma

Each uniformly c.e. sequence ( Y)xen With degrees in a proper Zg
ideal I is uniformly lows.
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Bounds for proper 3 ideals

Theorem

Each proper Zg ideal 1 in the c.e. degrees has a low, upper bound. J

In particular, there is a low, c.e. degree above all the K-trivials. We
say u.c.e. sequence (Ap)qcn is uniformly lows if from n one can
compute index for Turing reduction of (©,, A;)" to ()"

Uniform Low,-ness Lemma

Each uniformly c.e. sequence ( Y)xen with degrees in a proper >3
ideal I is uniformly lows.

e This uniform low,-ness allows us to code all of I into an upper
bound, while keeping this bound lows.
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Bounds for proper 3 ideals

Theorem
Each proper Zg ideal 1 in the c.e. degrees has a low, upper bound. J

In particular, there is a low, c.e. degree above all the K-trivials. We
say u.c.e. sequence (Ap)qcn is uniformly lows if from n one can
compute index for Turing reduction of (©,, A;)" to ()"

Uniform Low,-ness Lemma

Each uniformly c.e. sequence ( Y)xen with degrees in a proper >3
ideal I is uniformly lows.

e This uniform low,-ness allows us to code all of I into an upper
bound, while keeping this bound lows.

e We have a () construction with a tree of strategies to read a
lows-ness index for the upper bound off the true path.
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Proof of Uniform Lowsness Lemma

Uniform Low,-ness Lemma

Each uniformly c.e. sequence (Y )xen with degrees in a proper >3
ideal I is uniformly lows.

We show that the M3( Yx) complete sets Tot" are uniformly 9.
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Proof of Uniform Lowsness Lemma

Uniform Low,-ness Lemma

Each uniformly c.e. sequence (Y )xen with degrees in a proper >3
ideal I is uniformly lows.

We show that the M3( Yx) complete sets Tot" are uniformly 9.
Since T is a proper Zg ideal, it suffices to define a uniformly c.e.
sequence (U ) such that for each k, n we have

e if n e Tot" then deg(Uy ) € T
e if n¢ Tot" then Uy , =" 0.
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Proof of Uniform Lowsness Lemma

Uniform Low,-ness Lemma

Each uniformly c.e. sequence (Y )xen with degrees in a proper >3
ideal I is uniformly lows.

We show that the M3( Yx) complete sets Tot" are uniformly 9.
Since T is a proper Zg ideal, it suffices to define a uniformly c.e.
sequence (U ) such that for each k, n we have

e if n e Tot" then deg(Uy ) € T
e if n ¢ Tot" then Ucn="10".

This is done by attempting to enumerate ()’ into the Uy ,. At stage s, for
each n,k < s:

if v e (0, and %(v) 7 [s], enumerate v into Uy .
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Bounds for proper 9 ideals

Theorem

Each proper Zg ideal 1 in the c.e. degrees has an incomplete upper
bound.
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Bounds for proper 9 ideals

Theorem

Each proper Zg ideal 1 in the c.e. degrees has an incomplete upper
bound.

e Let 7 be the c.e. sets with degree in [.
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Bounds for proper 9 ideals

Theorem

Each proper 22 ideal 1 in the c.e. degrees has an incomplete upper
bound.

e Let 7 be the c.e. sets with degree in [.

e There is a high c.e. set H of non-cuppable degree (Harrington and
Miller 1981).
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Bounds for proper 9 ideals

Theorem

Each proper ¥{ ideal I in the c.e. degrees has an incomplete upper
bound.

e Let 7 be the c.e. sets with degree in [.

e There is a high c.e. set H of non-cuppable degree (Harrington and
Miller 1981).

e We may assume that H is in Z, else throw it in and remain proper.
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Bounds for proper 9 ideals

Theorem

Each proper ¥{ ideal I in the c.e. degrees has an incomplete upper
bound.

Let 7 be the c.e. sets with degree in L.

There is a high c.e. set H of non-cuppable degree (Harrington and
Miller 1981).

We may assume that H is in Z, else throw it in and remain proper.
The construction now works because I is only -3(H).
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Bounds for proper 9 ideals

Theorem

Each proper ¥{ ideal I in the c.e. degrees has an incomplete upper
bound.

e Let 7 be the c.e. sets with degree in [.

There is a high c.e. set H of non-cuppable degree (Harrington and

Miller 1981).

We may assume that H is in Z, else throw it in and remain proper.

The construction now works because I is only -3(H).

e Itis a ()’ construction, but no explicit tree of strategies is needed. It
suffices to use hat computations.
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Bounds for proper 9 ideals

Theorem

Each proper ¥{ ideal I in the c.e. degrees has an incomplete upper
bound.

e Let 7 be the c.e. sets with degree in [.

There is a high c.e. set H of non-cuppable degree (Harrington and

Miller 1981).

We may assume that H is in Z, else throw it in and remain proper.

The construction now works because I is only -3(H).

e Itis a ()’ construction, but no explicit tree of strategies is needed. It
suffices to use hat computations.
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The requirements

Since H' > ()", we have N3 C N3(H), and therefore 3 C Z3(H).

André Nies The University of Auckland () Ideals in the Turing degrees



The requirements

Since H' > (1", we have M3 C NJ(H), and therefore &9 C ¥3(H).
Hence there exists a uniformly c.e. sequence of operators (Ve ) such
that

WeeZ <= 3n Vg, =N
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The requirements

Since H' > (1", we have M3 C NJ(H), and therefore &9 C ¥3(H).

Hence there exists a uniformly c.e. sequence of operators (Ve ) such
that

WeeZ <= 3n Vg, =N

In order to build an incomplete upper bound, we build B meeting the
requirements

C(e,n): Vgn:N = We<rBaoH.
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The requirements

Since H' > (", we have N3 C NJ(H), and therefore 9 C ¥I(H).
Hence there exists a uniformly c.e. sequence of operators (Ve ) such
that

WeeZ <= 3n Vg, =N
In order to build an incomplete upper bound, we build B meeting the
requirements
C(e,n) : Vgn:N = We<rBaoH.
We make B Turing incomplete, by meeting the requirements

Nm: O =08 = Jk3Iey,...,ex 1[0/ <1 DickWe, @ H &Yi We, € I].
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The requirements

Since H' > (", we have N3 C NJ(H), and therefore 9 C ¥I(H).
Hence there exists a uniformly c.e. sequence of operators (Ve ) such
that

WeeZ <= 3n Vg, =N

In order to build an incomplete upper bound, we build B meeting the
requirements

C<e7”> : Vgn =N = We<rBaoH.
We make B Turing incomplete, by meeting the requirements
Nm: O =02 = 3k3eo,.... e[l <7 DickWe, @ H  &ViWe, € I].

This condition says that, if B is complete, then the ideal given by 7 is
not proper. The sets W,,, i < k, will be the members of 7 that are
coded into B through higher priority requirements.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 35/39




Prime ideals

Ideal / of usl Uis called prime if x,y ¢ | = 3z < x,yz & I.
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Prime ideals

Ideal / of usl Uis called prime if x,y ¢ | = 3z < x,yz ¢ I.
The cappable degrees form a I‘I?1 prime ideal in the c.e. degrees.
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Prime ideals

Ideal / of usl Uis called prime if x,y ¢ | = 3z < x,yz ¢ I.
The cappable degrees form a 19 prime ideal in the c.e. degrees.
We show that this is optimal, answering a question of Calhoun (1990).
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Prime ideals

Ideal / of usl Uis called prime if x,y ¢ | = 3z < x,yz ¢ I.

The cappable degrees form a 19 prime ideal in the c.e. degrees.

We show that this is optimal, answering a question of Calhoun (1990).
Corollary

No proper =9 ideal is prime. J
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Prime ideals

Ideal / of usl Uis called prime if x,y ¢ | = 3z < x,yz ¢ I.
The cappable degrees form a Hg prime ideal in the c.e. degrees.
We show that this is optimal, answering a question of Calhoun (1990).

Corollary
No proper =9 ideal is prime. J

For, pick an incomplete upper bound of the ideal. Welch 1981 shows
that there is a minimal pair of degree none of which are below this
upper bound.
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Density of partial orders of ideals

Recall: each principal ideal [0, b], where b + 0, has a maximal
subideal I that is AJ(b).
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Density of partial orders of ideals
Recall: each principal ideal [0, b], where b + 0, has a maximal
subideal I that is AJ(b).

Choosing b low, this shows that the lattice of =9 ideals fails to be
dense.
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Density of partial orders of ideals

Recall: each principal ideal [0, b], where b # 0, has a maximal
subideal I that is AJ(b).

Choosing b low, this shows that the lattice of =2 ideals fails to be
dense.

In contrast, we have:

Theorem
The partial order of Zg ideals in the c.e. degrees is dense. J
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Density of partial orders of ideals
Recall: each principal ideal [0, b], where b # 0, has a maximal

subideal I that is AJ(b).

Choosing b low, this shows that the lattice of =2 ideals fails to be
dense.

In contrast, we have:

Theorem
The partial order of Zg ideals in the c.e. degrees is dense. J

e Infactif J is a proper Zg ideal in the c.e. degrees, then each degree
d ¢ J splits in the quotient usl.
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Density of partial orders of ideals

Recall: each principal ideal [0, b], where b # 0, has a maximal
subideal I that is AJ(b).

Choosing b low, this shows that the lattice of =2 ideals fails to be
dense.

In contrast, we have:

Theorem
The partial order of Zg ideals in the c.e. degrees is dense. J

e Infactif J is a proper Zg ideal in the c.e. degrees, then each degree
d ¢ J splits in the quotient usl.

e This uses the Uniform Lows,-ness Lemma combined with a Sacks
Splitting type technique.
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Density of partial orders of ideals

Recall: each principal ideal [0, b], where b # 0, has a maximal
subideal I that is AJ(b).

Choosing b low, this shows that the lattice of =2 ideals fails to be
dense.

In contrast, we have:

Theorem
The partial order of Zg ideals in the c.e. degrees is dense. J

e Infactif J is a proper Zg ideal in the c.e. degrees, then each degree
d ¢ J splits in the quotient usl.

e This uses the Uniform Lows,-ness Lemma combined with a Sacks
Splitting type technique.

e We also see now that I above is not uniformly generated: else it
would already be ¥9.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 37/39



Some open questions on ideals

e Is every 7§ ideal I the intersection of the principal ideals it is
contained in? (This would strengthen our result that I has an
incomplete upper bound.)

e For k > 4, is the class of principal ideals definable in the lattice of =)
ideals? Natural elementary differences for k > 47

e Let K be the ideal of K-trivial degrees. Are there c.e. degrees a, b
such that K = [0,a] N [0, b]?

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 38/39



Some references

A. Nies, Parameter definable subsets of the recursively
enumerable degrees, JML, 2002.

Papers by Yang and Yu.

Greenberg, Hirschfeldt and N. Characterizing the s.j.t. sets via
randomness. To appear.

G. Barmpalias and A. Nies, Upper bounds on ideals in the Turing
degrees. To appear.

André Nies The University of Auckland () Ideals in the Turing degrees August 7, 2009 39/39



