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Bounded Turing reducibilities

Notions of bounded Turing reducibilites have been introduced by imposing
bounds b(x) on the admissible sizes of the oracle queries in a Turing
reduction A(x) = ΦB(x):

b(x) computable: bounded Turing (bT ) or weak truth table (wtt)

b(x) = id(x) = x : identity bounded Turing (ibT )

b(x) = id(x) + c = x + c : strongly bounded Turing (sbT ) or strong
weak truth table (sw) or computable Lipschitz (cl)

For b(x) = id(x) + k we call the corresponding reducibility also (i + k)bT
(which, for k ≥ 1, is not transitive).
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Examples of ibT reductions

Some typical, frequently used examples of ibT reductions on the c.e. sets
are the following.

(Delayed) Permitting

x ∈ Aat s ⇒ ∃ y ≤ x (y ∈ Bat s)

Splitting
A = B ∪̇ C ⇒ B ≤ibT A and C ≤ibT A

In fact,
degibT (A) = degibT (B) ∨ degibT (C )
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Origins and Applications

ibT -reducibility was introduced by Soare (2004) in the context of
some applications of computability theory to differential geometry
(Nabutovski and Weinberger).

sbT -reducibility was introduced by Downey, Hirschfeldt and LaForte
(2001) in the context of computable randomness.

The structure of these reducibilities on the c.e. sets (and c.e. reals) has
been recently studied by Barmpalias, Belanger, Csima, Ding, Downey, Fan,
Hirschfeldt, LaForte, Lewis, Soare, Yu, and others.
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Strongly bounded Turing reducibility and computable
invariance

THEOREM. For any noncomputable c.e. set A there are c.e. sets A+ and
A− such that the following hold.

A, A+ and A− are computably isomorphic.

For r ∈ {ibT , sbT}, A− <r A <r A+.

So, in particular, ibT -equivalence and sbT -equivalence are not computably
invariant.
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Strongly bounded Turing reducibilities vs. truth-table-type
reducibilities

A ≤bT B

↗ ↖

A ≤tt B A ≤sbT B
↑ ↑

A ≤btt B A ≤ibT B
↑

A ≤m B
↑

A ≤1 B

nonadaptive adaptive
computable bound identity bound
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Strictness of A ≤ibT B ⇒ A ≤sbT B ⇒ A ≤bT B

THEOREM (DHL 2001, BL 2006). Let A be a noncomputable c.e. set.

For A + 1 = {x + 1 : x ∈ A}, A + 1 <ibT A and A + 1 =sbT A.

For 2A = {2x : x ∈ A}, 2A <sbT A and 2A =bT A.

PROOF.
A ≤ibT A + 1 ⇒ A selfreducible

⇒ A computable

(And, similarly, for A ≤sbT 2A.)
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Incompatibility of truth-table and strongly bounded
reducibilities

THEOREM. There are noncomputable c.e. sets A and B such that

for r ∈ {1,m, btt, tt}, A <r B

for r ′ ∈ {ibT , sbT}, B <r ′ A

PROOF (Finite Injury). Enumerate sets A and B such that

(i) B ⊆ {2x2 : x ≥ 0} ∪ {2x2 + 1 : x ≥ 0}
(ii) x ∈ Aat s ⇔ 2x2 ∈ Bat s

(iii) 2x2 + 1 ∈ Bat s ⇒ x ∈ Aat s

(iv) <e : Φe total and nonadaptive ⇒ ∃ x (B(2x2 + 1) 6= ΦA
e (2x2 + 1))
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The partial orderings (RibT ,≤) and (RsbT ,≤)

For r ∈ {ibT , sbT},
(Rr ,≤) is a partial ordering with least element
0 = {A : A computable}
(Rr ,≤) has no minimal nonzero elements
(For noncomputable A, 0 < degibT (A + 1) < degibT (A) and

0 < degsbT (2A) < degsbT (A).)

THEOREM (Barmpalias 2005). (RsbT ,≤) does not possess any maximal
elements (hence, in particular, there is no complete degree).

The corresponding fact for (RibT ,≤) is trivial: For noncomputable A,
A <ibT A− 1 where A− 1 := {x − 1 : x ≥ 1 & x ∈ A}.
(Note that (A− 1) + 1 =∗ A!)
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Computable shifts

DEFINITION. A strictly increasing, computable function f : ω → ω is
called a computable shift. A shift f is nontrivial if f (x) > x for some
(hence for almost all) x , and f is unbounded if for any number k there is a
number x such that f (x)− x > k.
For any set A and any shift f , the f -shift of A is defined by

Af = {f (x) : x ∈ A}.

FACTS. (1) For any shift f , x ≤ f (x). Moreover, f (x)− x is nondecreasing in x .
So if f is unbounded then limn→∞(f (n)− n) = supn→∞(f (n)− n) = ∞.

(2) For any bounded shift f , Af =∗ A + k for some k ≥ 0 where
A + k = {x + k : x ∈ A}.

(3) For any computable unbounded shift f there are computable unbounded shifts
g and h such that Af = (Ag )h.
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The Shift Lemma

SHIFT LEMMA (preliminary form). Let f be a computable shift and let A
be a noncomputable c.e. set.

(i) A ≤1 Af and Af =m A.

(ii) For nontrivial and bounded f , Af <ibT A and Af =sbT A.

(iii) For unbounded f , Af <sbT A and Af =bT A.

PROOF. As in case of the examples A + 1 and 2A of bounded and
unbounded computable shifts, one shows that if (in (ii) or (iii)) A where
reducible to Af then A were selfreducible, hence computable.
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The Shift Lemma

SHIFT LEMMA (final form). Let f be a computable shift and let A be a
noncomputable c.e. set.

(i) A ≤1 Af and Af =m A.

(ii) For nontrivial and bounded f , Af <ibT A and Af =sbT A.
In fact, if B is a c.e. set such that A ∩ B = ∅ and A ≤ibT Af ∪̇ B
then A ≤ibT B.

(iii) For unbounded f , Af <sbT A and Af =bT A.
In fact, if B is a c.e. set such that A ∩ B = ∅ and A ≤sbT Af ∪̇ B
then A ≤sbT B.

For a reducibility where the join of two degrees can be represented by the degree

of the disjoint union of sets in these degrees, the above would show that deg(A)

has the anti-cupping property via deg(Af ).
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Barmpalias’s Theorem

THEOREM. For any noncomputable c.e. set A there is a c.e. set Â such
that A <sbT Â (and A <ibT Â). So (RsbT ,≤) does not possess any
maximal elements (hence does not have a greatest element).

PROOF (A-S, Ding, Fan, Merkle; Belanger). Fix an infinite computable
subset B of A, and let Â be the compressed version of A \ B obtained by
the order isomorphism π : ω \ B → ω. Then A \ B is a computable
unbounded shift of Â whence A \ B <sbT Â by the Shift Lemma. But,
obviously, A \ B =ibT A.

Similarly, one obtains a set Â as above such that A and Â are computably

isomorphic: Take two infinite computable disjoint subsets B and C of A. Let Ã

be the compressed version of A \ (B ∪ C ) obtained by the order isomorphism

π : ω \ (B ∪ C ) → ω \ C , and let Â = Ã ∪ C .
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Another application of shifts: automorphisms

THEOREM. The partial ordering of the c.e. ibT -degrees is not rigid.

PROOF. For the bounded shift f (x) = x + 1 mapping A to A + 1,

A ≤ibT B ⇔ A + 1 ≤ibT B + 1.

So f is ibT -degree invariant, and for the corresponding function f on the
c.e. ibT -degrees

a ≤ b ⇔ f(a) ≤ f(b).

Moreover, f is onto since, for any set A, A =∗ (A− 1) + 1 whence
degibT (A) = f(degibT (A− 1)).

Note that f generates the bounded (left and right) shifts. So the
automorphism group of (RibT ,≤) is infinite.
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Permitting vs. strongly bounded T -reducibility

PERMITTING LEMMA. If B ≤T A via permitting then B ≤ibT A (hence
B ≤sbT A).

Conversely, any ibT -reduction can be represented by permitting.

REPRESENTATION LEMMA. Let A and B be noncomputable c.e. sets
such that B ≤(i+k)bT A. There are c.e. subsets Â and B̂ of A and B,

resp., and computable 1-1 enumerations {a(n)}n≥0 and {b(n)}n≥0 of Â
and B̂, resp., such that

Â =ibT A and B̂ =ibT B and

∀ n (a(n) ≤ b(n) + k)

PROOF. Given an (i + k)bT -reduction B = ΦA, choose a computable increasing

sequence {sn}n≥0 of expansionary stages such that between any two of these

stages a number less than the previous length of agreement is enumerated into B

and let b(n) and a(n) be the least numbers enumerated into B and A, resp.,

between stage sn and sn+1.
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resp., and computable 1-1 enumerations {a(n)}n≥0 and {b(n)}n≥0 of Â
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Splitting and strongly bounded T -reducibility

SPLITTING LEMMA (SL). For pairwise disjoint c.e. sets A0, . . . ,An

(n ≥ 1), degr (A0) ∨ · · · ∨ degr (An) = degr (A0 ∪ · · · ∪ An)
(r ∈ {ibT , sbT}).

PROOF. Aj ≤ibT A0 ∪ · · · ∪ An by permitting. So, given B such that

Aj ≤(i+kj )bT B, it suffices to show that A0 ∪ · · · ∪ An ≤(i+k)bT B where

k = max kj . But this is obviously true.

DISTRIBUTIVITY LEMMA. Let A0, . . . ,An (n ≥ 1) be pairwise disjoint
c.e. sets, let A = A0 ∪ · · · ∪ An, and let B be a c.e. set such that
B ≤(i+k)bT A. There is a c.e. set B̂ =ibT B and a splitting

B̂ = B0 ∪ · · · ∪ Bn of B̂ into pairwise disjoint c.e. sets Bj such that
Bj ≤(i+k)bT Aj (0 ≤ j ≤ n).

PROOF. Choose Â, B̂, {a(n)}n≥0 and {b(n)}n≥0 as in the Representation

Lemma and let Bj = {b(n) : a(n) ∈ Aj}.
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Bounded shifts and definability

THEOREM. Let A ⊆ 2ω (A ⊆ 2ω + 1) be a noncomputable c.e. set and
let B be a c.e. set such that B ≤ibT A. T.f.a.e.

(i) B ibT -cups to A. I.e., there is a c.e. set C <ibT A such that

degibT (A) = degibT (B) ∨ degibT (C ).

(ii) B 6≤ibT A + 1.

I.e., degibT (A + 1) is the greatest degree which does not cup to degibT (A).

So, for A as above, the degrees degibT (A + k) (k ≥ 1) are definable with
parameter degibT (A).

COROLLARY. The theory of the c.e. ibT -degrees realizes infinitely many
2-types, hence is not ω-categorical.
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So, for A as above, the degrees degibT (A + k) (k ≥ 1) are definable with
parameter degibT (A).

COROLLARY. The theory of the c.e. ibT -degrees realizes infinitely many
2-types, hence is not ω-categorical.
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Proof: (i) ⇒ (ii)

It suffices to show that A + 1 does not ibT -cup to A.

Assume
degibT (A) = degibT (A + 1) ∨ degibT (C ).

By RL w.l.o.g. we may assume that there are computable 1-1 enumerations
{a(n)} and {c(n)} of A and C , resp., such that a(n) ≤ c(n). Split C into

C0 = {c(n) : a(n) = c(n)} ∩ A + 1 = ∅
C1 = {c(n) : a(n) < c(n)} ≤ibT A + 1

Then, by SL,
A =ibT A + 1 ∪̇ C0

whence A ≤ibT C0 ≤ibT C by the Shift Lemma (and SL).
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Proof: (ii) ⇒ (i)

Given B ≤ibT A such that B 6≤ibT A + 1, it suffices to give C <ibT A such
that

(∗) degibT (A) = degibT (B) ∨ degibT (C ).

By RL w.l.o.g. we may fix computable 1-1 enumerations {a(n)} and
{b(n)} of A and B, resp., such that a(n) ≤ b(n). Split B into

B0 = {b(n) : a(n) < b(n)} ≤ibT A + 1
B1 = {b(n) : a(n) = b(n)} 6≤ibT A + 1 (by SL and by B 6≤ibT A + 1)

Now, let C = {a(n) : a(n) < b(n)}. Since A = B1 ∪̇ C , (∗) holds by SL.
Finally, C <ibT A follows from the following observation.

PROPOSITION. Let D and E be disjoint c.e. sets such that D ≤ibT E .
Then D ≤ibT E + 1.
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Bounded shifts and density

THEOREM (Barmpalias and Lewis 2006). There is a noncomputable c.e.
set A such that

∀ B (A + 1 ≤ibT B ≤ibT A ⇒ A + 1 =ibT B or B =ibT A).

Hence the partial ordering of the c.e. ibT -degrees is not dense.

The proof uses an infinite injury (tree) argument.

THEOREM. There is a noncomputable c.e. set A such that the interval
[degibT (A + 1), degibT (A)] is isomorphic to the countable atomless
Boolean algebra.

The proof uses a finite injury argument.
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Importing results from other degree structures

Some results about the weaker reducibilities ≤bT and ≤T carry over to
≤sbT and ≤ibT either

directly or

by using the fact that certain reductions there are ibT -reductions or

by combining the results with some of the previously mentioned
simple techniques and/or

by using some additional facts on relations between the above
reducibilities.

We give some examples.
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Examples of direct imports

THEOREM. For r ∈ {ibT , sbT}, the partial ordering (Rr ,≤) is not total.

PROOF. There is a pair of T -incomparable c.e. sets, and any
T -incomparable pair is r -incomparable.

THEOREM. For r ∈ {ibT , sbT}, there is a minimal pair of c.e. r -degrees.

PROOF. There is a T -minimal pair, and any such pair is r -minimal.
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Examples of imports using the Splitting Lemma

THEOREM (DHL 2001 (?)). For r ∈ {ibT , sbT}, every nonzero c.e.
r -degree splits.

PROOF. By Sacks’s splitting theorem and by SL.

THEOREM (Barmpalias and Lewis). Every finite partial ordering is
embeddable into (Rr ,≤) (r ∈ {ibT , sbT}).

PROOF. Given n ≥ 1, it suffices to embed the partial ordering

P = ({α : α ⊆ {0, . . . , n}},⊆). Let A0, . . . ,An be a T -independent sequence of

c.e. sets, let Â0, . . . , Ân be pairwise disjoint sets such that Âi =T Ai and let

Bα = ∪i∈αÂi . Then, by T -independence and by SL, Bα ≤r Bβ ⇔ α ⊆ β.
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Converting sbT into ibT

sbT -ibT -CONVERSION LEMMA. Let A and B be c.e. sets and k ≥ 1.
T.f.a.e.

1 A ≤(i+k)bT B

2 A + k ≤ibT B

3 A ≤ibT B − k

4 A + k ′ ≤ibT B − k ′′ (k = k ′ + k ′′)

(And A + k =sbT A and B − k =sbT B.)

sbT -ibT -CONVERSION LEMMA (General Form).

1 Let A,B0, . . . ,Bn be c.e. sets such that A ≤sbT B0, . . . ,Bn. There is
a c.e. set Â =sbT A such that Â ≤ibT B0, . . . ,Bn.

2 Let A0, . . . ,An,B be c.e. sets such that A0, . . . ,An ≤sbT B. There is
a c.e. set B̂ =sbT B such that A0, . . . ,An ≤ibT B̂.
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Converting sbT into ibT : meets and joins

The general form of the sbT -ibT -Conversion Lemma implies:

MEET LEMMA FOR ibT .

degibT (A) = degibT (B0) ∧ · · · ∧ degibT (Bn)
⇓

degsbT (A) = degsbT (B0) ∧ · · · ∧ degsbT (Bn)

JOIN LEMMA FOR ibT .

degibT (B) = degibT (A0) ∨ · · · ∨ degibT (An)
⇓

degsbT (B) = degsbT (A0) ∨ · · · ∨ degsbT (An)
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Converting bT into sbT

bT -sbT -CONVERSION LEMMA. Let A and B be c.e. sets such that
A ≤bT B.

1 If the use of the reduction is bounded by the computable unbounded
shift f then Af =bT A and Af ≤ibT B

2 If R is an infinite computable subset of A and B̃ is the shifted version
of B with domain R then, for B̂ = (A \ R) ∪ B̃, A ≤ibT B̂ and
B̂ =sbT B

bT -sbT -CONVERSION LEMMA (General Form).

1 Let A,B0, . . . ,Bn be c.e. sets such that A ≤bT B0, . . . ,Bn. There is a
c.e. set Â =bT A such that Â ≤ibT B0, . . . ,Bn.

2 Let A,B be c.e. sets such that A ≤sbT B. There is a c.e. set
B̂ =sbT B such that A ≤ibT B̂.
(In this case the more general corresponding version for sets
A0, . . . ,An in place of A fails for n ≥ 1.)
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Converting bT into sbT : meets

The general form of the bT -sbT -Conversion Lemma implies:

MEET LEMMA FOR sbT .

degsbT (A) = degsbT (B0) ∧ · · · ∧ degsbT (Bn)
⇓

degbT (A) = degbT (B0) ∧ · · · ∧ degbT (Bn)

A corresponding lemma for joins fails!

COROLLARY (Downey and Hirschfeldt). For r ∈ {ibT , sbT}, the partial
ordering (Rr ,≤) is not a lower semi-lattice.

PROOF. Jockusch has shown that (RbT ,≤) is not a lower semi-lattice and
by the Meet Lemmas this carries over to (RsbT ,≤) and (RibT ,≤) .

Klaus Ambos-Spies (Heidelberg) Strongly-Bounded-Turing Degrees Sofia 2009 28 / 35



Applications of the Meet Lemmas: Minimal Pairs

MINIMAL PAIR THEOREM. For c.e. sets A and B the following are
equivalent.

(A,B) is an ibT -minimal pair.

(A,B) is an sbT -minimal pair.

(A,B) is a bT -minimal pair.

Together with the conversion lemmas this implies:

NONBOUNDING THEOREM. For a c.e. set C the following are
equivalent.

C is ibT -nonbounding.

C is sbT -nonbounding.

C is bT -nonbounding.

Here a c.e. set C is r -nonbounding if there is no r -minimal pair (A,B) such that

A,B ≤r C .
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1-types of the theories of the c.e. ibT and sbT degrees

The above results on minimal pairs and nonbounding degrees allow to transfer

the proof of A-S and Soare that the theory of the c.e. bT -degrees has infinitely

many 1-types to the c.e. ibT - and sbT -degrees.

THEOREM. The theories of (RibT ,≤) and (RsbT ,≤) realize infinitely
many 1-types, hence are not ω-categorical.

PROOF (IDEA). By a 0′′′-argument A-S and Soare 1989 have shown that,
for any k ≥ 1, there are bT -nonbounding sets A0, . . . ,Ak which are
pairwise bT -minimal pairs. By distributivity of the c.e. bT -degrees this
implies that the k + 1-atom Boolean algebra can be embedded into the
interval [0, degbT (A0) ∨ · · · ∨ degbT (Ak)] whereas the k + 2-atom Boolean
algebra cannot be embedded into this interval (as Boolean algebras). If we
replace the sets A0, . . . ,Ak by pairwise disjoint bT -equivalent c.e. sets
then, by the Splitting and Distributivity Lemmas and by the Minimal Pair
and Nonbounding Theorems, we can make the same observation for ibT
and sbT in place of bT .
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Pairs without joins

THEOREM (Barmpalias 2005; Fan and Lu 2005). There is a pair of c.e.
sets A and B such that, for r ∈ {ibT , sbT}, degr (A) ∨ degr (B) does not
exist.

PROOF (Finite injury; r = ibT ). Given V and ibT -reductions A = ΦV and
B = ΨV we have to construct a c.e. set U such that A,B ≤ibT U and such that
U meets the requirements

<Γ : V 6= ΓU

for all ibT -functionals Γ.

ATTACK ON <Γ:

Fix x (fresh) and impose restraint on A, B, U.

Wait for a stage s1 such that A � x + 1 = ΦV � x + 1,
B � x + 1 = ΨV � x + 1, and V � x + 1 = ΓU � x + 1.
Put x into A.

Wait for Φ- and Ψ-recovery at a stage s2 > s1. V � x + 1 must have
changed. If V � x has changed, complete the attack by putting x into U.
Otherwise (i.e., if x has entered V ) put x into U and B.
(The latter forces V to change below x at a later stage.)
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Maximal pairs

DEFINITION. A pair (A,B) of c.e. sets is an r -maximal pair if there is no
c.e. set C such that A,B ≤r C .

Note that, by the sbT -ibT -Conversion Lemma, ibT -maximal pairs and
sbT -maximal pairs coincide.

THEOREM (Barmpalias 2005; Fan and Lu 2005). There is an
ibT -maximal pair.
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Construction of an ibT -maximal pair (A, B) (Y. Fan)

Given a computable enumeration {Φ̂e}e≥0 of the partial ibT -functionals, it
suffices to meet the requirements

<e : A 6= Φ̂
We0
e1 ∨ B 6= Φ̂

We0
e2 (e = 〈e0, e1, e2〉)

Split ω into infinitely many intervals Ie such that

|Ie | > |
⋃

e′<e

Ie′ | (whence 2 · |Ie | > |
⋃

e′≤e

Ie′ |).

Define A and B on Ie in such a way such that <e is met:

∃ x ∈ Ie (A(x) 6= Φ̂
We0
e1 (x) ∨ B(x) 6= Φ̂

We0
e2 (x)).

ACTION. If ∀ x ∈ Ie [As(x) = Φ̂
We0,s
e1,s (x) & Bs(x) = Φ̂

We0,s
e2,s (x)] and if there is

some y ∈ Ie which has not yet put into A (or B) then put the least such y into A
(or B).
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More on maximal pairs

A-S, Ding, Fan and Merkle have shown:

There is an ibT -maximal pair of m-complete sets.

For any c.e. set C there is an ibT -maximal pair (A,B) such that
C ≤ibT A,B.

There is a pair of c.e. sets (A,B) which is ibT -maximal and
ibT -minimal.

For a c.e. set C the following are equivalent.
I degT (C ) is array noncomputable.
I There is an ibT -maximal pair (A,B) such that A =T B =T C .
I There is an ibT -maximal pair (A,B) such that A =T C .

If A is bT -complete then there is a c.e. set such that the pair (A,B)
ist ibT -maximal. On the other hand, there is a T -complete set A
which is not half of any ibT -maximal pair.
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Some open problems

Is (RsbT ,≤) rigid? Is there an automorphism of (RibT ,≤) which
moves some degree (any nonzero degree) to an incomparable one?

Are the elementary theories of (RibT ,≤) and (RsbT ,≤) undecidable?
What are their degrees?

Is every c.e. ibT (sbT ) - degree branching?

Is there any nondistributive lattice embeddable into (RibT ,≤) or
(RsbT ,≤)?
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