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S.B. Cooper (1971) considering

Turing degrees of finite levels of

the Ershov hierarchy (Turing de-

grees of n-c.e. sets) get a non-

collapsing hierarchy of degrees

of these sets.
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Theorem (S.B. Cooper’1971)

For any n > 1 there is an n-c.e.

degree d which does not contain

(n− 1)-c. e. sets. (d is a prop-

erly n-c.e. degree)
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Unpublished results of A.H. Lach-

lan, R.A. Shore, L. Hay, M. Ler-

man on mutual arrangement of

2-c.e. (in other words d-c.e.)

and c.e. degrees.
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M.M. Arslanov, Structural properties

of the degrees below 0′, Dokl. Akad.

Nauk SSSR, 283(1985), 270-273.

M.M. Arslanov, On the upper semilat-

tice of of Turing degrees below 0′, Sov.

Math. 7(1988), 27-33.
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• For any n > 1, Th(R) 6=Th(Dn)

at the Σ0
3-level

• There is a high properly d-c.e.

degree. (Answering to a ques-

tion on whether any high d-c.e.

degree is c.e.?)
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• Any h-h-immune d.c.e. set is

co-c.e. (Lachlan);

• Any h-h-immune d.c.e. set has

a high degree (Martin);

• Any high c.e. degree contains

a h-h-simple set (Martin).
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Ju.L. Ershov (1968), S.B. Cooper (1971),

A.H.Lachlan (≈ 1970), M.M. Arslanov

(1985), R.A. Shore (1996), R.A. Downey

(1989), L. Harrington (1991), S. Lempp

(1991), Sh.T. Ishmukhametov (1990),

T.A. Slaman (1996), G. L. LaForte

(1996), X. Yi (1994), A. Li (2000), G.

Wu (2002), I.Sh. Kalimullin (2003),

Y.Yang (2006), L. Yu (2006), M.M.

Yamaleev (2008).
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A Turing degree a is n-c. e. if

it contains an n-c. e. set, and

it is a properly n-c. e. degree if

it contains an n-c. e. set but no

(n− 1)-c. e. sets.
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We denote by Dn the partial or-

dered structure of all n-c. e. de-

grees and by D the structure of

all Turing degrees.

Let R = D1 denotes the set of

c. e. degrees.
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• For any n > 1, Th(R) 6=Th(Dn)

at the Σ0
3-level (Arslanov, 1985,

1988), and

• they are different even at the

Σ0
2-level (R. Downey and others,

1990);
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• Th(D2) 6=Th(D3) at the Σ0
2-

level (Arslanov, Kalimullin, Lempp);
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• For any n > 1, Dn is not a

Σ1-substructure of Dn+1 (Y.Yue

and L.Yu [2006] for n = 1,

Arslanov and Yamaleev [ta] for

n = 2, and Shore and Slaman

[ta] for the general case);
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• There is an infinite definable in

D2 subset of R
(Arslanov, Kalimullin and Lempp

[ta]).
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• For any m > 1, the partial or-

ders of m-low c.e. and m-low d-

c.e. degrees are not elementarily

equivalent. (M. Faizrahmanov

and, independently, M.Yamaleev.)
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• (Harrington and Shelah; Lempp,

Nies and Slaman for the Σ0
3-theory).

The theory Th (Dn) is undecid-

able for every n > 1.
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• (Lachlan [1968]) For any given

n ≥ 1, the lattice Rn of all

n-c. e. sets is not computably

presentable, i.e. it is not isomor-

phic to any computable partial

ordering.
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Proof. As in the c.e. case, it

can be obtained using Lachlan’s

results on Boolean algebras and

h-h-simple sets.
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• (Shore [1999]) For any given

n ≥ 1, Dn is not computably pre-

sentable.
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Theorem. For any c.e. degree

a < 0′ there is a high c.e. degree

h, a < h < 0′, such that

Dn(≤ h) is not computably pre-

sentable for any n > 1.
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Theorem (Who?) For any c.e.

degree a > 0, Dn(≤ a) is not

computably presentable for any

n > 1.
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• (Lerman, Shore and Soare [1984])

For any given n > 1, Dn is not

countably categorical.
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Proof. The proof follows to the

proof of Lerman, Shore and Soare

[1984].

Their result on the existence of

countably many non-isomorphic

finite ”partial-lattices” (i.e. infi-

mum is not always defined) gen-

erated by three elements, all of

which can be embedded into R,

works also in the case of n-c.e.

degrees, n > 1.
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Each such finite three generated

partial lattice produces a distinct

three type realizable in Dn. Now

the theorem follows from Ryll-

Nardzjewski theorem on count-

ably categoricity.
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Major open questions

• Definability of the various lev-

els of the n-c.e. hierarchy, both

relatively and within wider local

structures;

• more specifically, questions re-

lated to the definability of the

relations of ‘computably enumer-

able’ and ‘computably enumer-

able in’;
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• Existence of nontrivial defin-

able in Dn sets of c. e. degrees;

• Definability of the relation “m-

c. e.” in Dn (and in D(≤ 0′)) for

each (some) n > m, m ≥ 2.
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• Decidability of the Σ2-theory

of the partial orderings of the d -

c.e. degrees, n-c.e. degrees;
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• Non elementary equivalence of

Dn and Dm degree structures for

n, m > 2 and n 6= m.

28



Program

(Definability of m-c.e. degrees

in the n-c.e. degree structure;

m < n).

• Find an infinite definable in Dn

set S of m-c.e. degrees;

• Then generate in Dn all m-c.e.

degrees by S.
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Case m = 1, n = 2.

(Definability of c.e. degrees in

the d-c.e. degrees.)
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Splitting properties of the

n-c.e. degrees
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• (Cooper’1992 for the case

b = 0, and Cooper and Li’2002

in general case) Any d-c.e. de-

gree a is splittable in d-c.e. de-

grees over any c.e. degree b < a.
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• (Cooper, Harrington, Lempp

and Soare, 1990) Not any n-c.e.

degree (even c.e. degree) d is

splittable (even in ω-c.e. degrees)

over any given d-c.e. degree

a < d, for any n > 1;
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• (Arslanov, Cooper and Li’2000,

2004) Any c.e. degree a is split-

table in d-c.e. degrees over any

low d-c.e. degree b < a.
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An unpublished result

• For every n ≥ 1 there is a prop-

erly n-c.e. degree x such that

x′ = 0′, and any n-c.e. degree

y > x is splittable in n-c.e. de-

grees above x.

A proof of this theorem can be

obtained generalizing the proof

of Robinson’s Low Splitting the-

orem.
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Theorem (A.Li) Any d-c.e. de-

gree d > 0 is splittable over any

low d-c.e. degree x < d.
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Theorem

(Shore and Slaman’2000)

Let Turing degrees d, a and b be

given so that d is n-c.e. for some

n ≥ 1 and a, b are ∆0
2-degrees

such that a 6≥ b. Then d can be

split in ∆0
2-degrees over a avoid-

ing the upper cone of b.
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If

- a = 0;

- d is properly d-c.e. degree,

and

- b is noncomputable ∆0
2-degree

s.t. between d and b there are

no c.e. degrees,

then d is splittable in d-c.e.

degrees avoiding the upper cone

of b (Yamaleev).
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Theorem (Yamaleev) Let prop-

erly d-c.e. degrees d and b be

given so that d > b and the in-

terval (d, b) does not contain c.e.

degrees. Then d can be split

into d-c.e. degrees avoiding the

upper cone of b.
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Therefore, any properly d-c.e. de-

gree b has the following prop-

erty:

• For any d-c.e. degree d > b

there is a d-c.e. degree a such

that b < a ≤ d, and a is splittable

in d-c.e. degrees avoiding the

upper cone of the degree b.
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∀a ∈ R ∃b > a ∀d, a < d ≤ b?
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At least, such c.e. degrees a ex-

ist:

Theorem

a) (AKL) There exist infinitely

many distinct d-c.e. degrees b

and c.e. degrees a < b such that

for any d-c.e. degree d, a < d ≤
b, d is not splittable in d-c.e. de-

grees, avoiding the upper cone

of b;
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b) (Cooper and Li’2001) For any

n > 1 there exist n-c.e. degree b

and c.e. degree a < b such that

b is not splittable in n-c.e. de-

grees, avoiding the upper cone

of a.
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Cooper, Li’2001
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Theorem The following set S
consists of c.e. sets, it is infinite

and definable in D2:

S =

{x ≥ 0|(∃y > x∀z)(x < z ≤ y →
(∀z0, z1)(z0 ∪ z1 = z & z0 | z1 →
x ≤ z0 ∨ x ≤ z1))}
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S = {x ≥ 0|(∃y > x∀z)(x < z ≤ y →
(∀z0, z1)(z0 ∪ z1 = z& z0 | z1 →

x ≤ z0 ∨ x ≤ z1))}
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Proof. It follows from the previ-

ous that

any properly d-c.e. degree d have

the following property: for any

d-c.e. degree u > d there is a

d-c.e. degree v, d < v ≤ u, such

that v is splittable in d-c.e.

degrees avoiding the upper cone

of u.
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Indeed,

- if between u and d there exists

an c.e. degree v, then v is split-

table avoiding u by Sacks split-

ting theorem.

- if between u and d there are

no c.e. degrees, then d itself is

so splittable by part b) of this

theorem.
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Now the following formula de-

fines S in D2:

ϕ(x) = (∃y > x)(∀z)(x < z ≤ y →
(∀z0, z1)(z0 ∪ z1 = z & z0 | z1 →
x ≤ z0 ∨ x ≤ z1))}.

We have

R |= ϕ(x) and D2 |= ¬ ϕ(x).
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Now we have two infinite definable in

D2 sets of c.e. degrees:

S = {x ≥ 0|(∃y > x)(∀z)(x < z ≤ y →

(∀z0, z1)(z0 ∪ z1 = z &z0 | z1 →

→ x ≤ z0 ∨ x ≤ z1))}

and

Q = {x > 0|(∃y > x)(∀z)(z ≤ y →

→ z ≤ x ∨ x ≤ z)}

Obviously, Q ⊆ S.
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Theorem.There exist a c.e. de-

gree x, d-c.e. degrees y and u

such that x < y, u < y and

a) x 6≤ u, u 6≤ x;

b) for any z, if x < z ≤ y and

z0 ∪ z1 = z for some d-c.e. de-

grees z0 and z1 such that z0 | z1,

then x ≤ z0 or x ≤ z1.
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Corollary. Q ⊆ S but S 6= Q.
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Questions (Each positive answer

defines c. e. degrees in D2)

(1) Does every c. e. degree a > 0

the least upper bound of two in-

comparable degrees from S.
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(2) Does for every c.e. degree a

there exist a splitting (in d-c.e.

degrees) a0, a1 such that there

exist d-c.e. degrees b0, b1, ai <

bi < a, such that bi is not split-

table avoiding the upper cone of

ai, each i ∈ {0,1}?
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• Any splitting d0 ∪ d1 = d of a

properly d-c.e. degree has the

following property:

for an i ≤ 1, any d-c.e. degree

u, di < u ≤ d, is splittable in d-

c.e. degrees avoiding the upper

cone of di.
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”Half-solution”

Theorem (Yamaleev) Any c.e.

degree a < 0′ is splittable into

two incomparable degrees a0 and

a1 such that a0 is c.e. and there

is a d-c.e. degree d > a0 such

that d is not splittable avoiding

the upper cone of a0.
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General case
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Conjecture 1 Let n > 1 and let

properly n-c.e. degrees d and b

be given so that d > b and the

interval (d, b) does not contain

(n − 1)-c.e. degrees. Then d

can be split into n-c.e. degrees

avoiding the upper cone of b.
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• Does for every n-c.e. degree a

there exist a splitting (in (n+1)-

c.e. degrees) a0, a1 such that

there exist (n+1)-c.e. degrees

b0, b1, ai < bi < a, such that bi is

not splittable avoiding the upper

cone of ai, each i ∈ {0,1}?
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• Does for each n ≥ 1, the fol-

lowing set of n-c.e. degrees de-

finable in Dn+1:

Sn =

{x ≥ 0|(∃y > x)(∀z)(x < z ≤ y →
(∀z0, z1)(z0 ∪ z1 = z & z0 | z1 →

→ x ≤ z0 ∨ x ≤ z1))}
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We also conjecture that

• this set of n-c.e. degrees gen-

erates all n-c.e. degrees and,

• for each n > 1, n-c.e. degrees

are uniformly definable in Dn+1.
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Theorem. There are definable

in D2 with one parameter c.e.

singletons.

Proof. If x ∈ S, then let y be

a degree such that for any z, if

x < z ≤ y and z0 ∪ z1 = z for

some d-c.e. degrees z0 and z1,

and z0 | z1, then x ≤ z0 or x ≤ z1.

Then y uniquely defines the c.e.

degree x.
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Theorem. There exist d-c. e.

degrees a < b such that there is

exactly one c.e. degree c ∈ Q
between a and b. Moreover, the

degree b can be chosen in any

given interval of high c.e. de-

grees u and v, u < v.
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Corollary. For any m ≥ 1 there

exist c. e. degrees a1, a2 . . . am

which are definable from param-

eters in D2.
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There are natural definable sets

of degrees in the structure of c.e.

degrees (the ideal of cappable

degrees etc).

Open questions: Find natural

sets of n-c.e. degrees definable

in the ∆0
2-degrees. Is the set

of all n-c.e. degrees for some

n > 1 definable from parame-

ters in the ∆0
2-degrees? Is the

set of all c.e. degrees definable

from parameters in the n-c.e. de-

grees for some /each n > 1?
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Theorem

(Slaman and Woodin’1986)

The class R of c.e. degrees is

definable from parameters

in D(≤ 0′).

73



Proof.

Theorem (SW’1986) Suppose

that A is a uniformly low sub-

set of D(≤ 0′) bounded by a low

degree a. Then A is definable

from parameters in D(≤ 0′).
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By definition, a set of degrees A
is uniformly low if it is uniformly

computable in ∅′ by means of

the sequence 〈X(n) | n ∈ ω〉 and

there is a ∅′-computable function

f such that {f(n)}∅′ is the Tur-

ing jump of 〈X(n) | n ∈ ω〉.
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Now, by a result of L. Welch’1981

there are two uniformly low sets

of c.e. degrees A0 and A1 such

that each c.e. degree a is a join

of a0 ∈ A0 and a1 ∈ A1. There-

fore, by the previous theorem,

the class R of c.e. degrees is

definable from parameters

in D(≤ 0′).
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Theorem. There exists a non-

low2 c.e. degree x > 0 such that

there exists a d-c.e. degree y > x

such that

(∀z)(z ≤ y → z ≤ x ∨ x ≤ z)
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Proof uses the following char-

acterization of the non-low2 de-

grees:

the degree of a set D is non-

low2 iff for every function h ≤T ∅′

there is a function f ≤T D which

is not dominated by h.
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Now we meet the bubble-construc-

tion requirements from [AKL]

jointly with the requirements

Re : Φe(∅′) total →
(∃xe){Fe(xe) > Φe(∅′, xe)}.

(For each Φe(∅′) construct a D-

computable function Fe)
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Corollary. There are d-c.e. de-

grees d > 0 such that any split-

ting of d into d-c.e. degrees

does not contain low2 d-c.e. de-

grees, i.e. if d = a ∪ b, then

a′′ > 0′′ and b′′ > 0′′.
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Theorem. There is a c.e. de-

gree a > 0 such that the ideal

{x ∈ D2 | x ≤ a} is definable from

parameters in D(≤ 0′).
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Theorem. There are c.e. de-

gree d and d-c.e. degree e such

that 0 < d < e and for any 2-c. e.

degree c ≤ e either c ≤ d or d ≤ c,

but there is a 3-c.e. degree u ≤ e

such that u is incomparable with

d.
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Now consider the following Σ1

formula:

ϕ(x, y, z) ≡ ∃u(x < y < z&u ≤
z&u 6≤ y&y 6≤ u).

It follows that

D3 |= ϕ(0, d, e), and

D2 |= ¬ϕ(0, d, e),
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Therefore, D2 6�Σ1
D3.
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Y. Yue and L. Yu proved that

R 6�Σ1
D2.
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