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Computable structures

» A countable algebraic structure 9 is called (X-)
computable, if for some 91 = M we have |N| C w and the
atomic diagram D(91) (X-) is computable.

Kalimullin I.Sh. Reducibilities of algebraic structures



Computable structures

» A countable algebraic structure 9 is called (X-)
computable, if for some 91 = M we have |N| C w and the
atomic diagram D(91) (X-) is computable.

» A countable algebraic structure 91 is called (X-) decidable,
if for some 9 = M we have |N| C w and the complete
diagram D*(N) is (X-) computable.

Kalimullin I.Sh. Reducibilities of algebraic structures



Computable structures

» A countable algebraic structure 9 is called (X-)
computable, if for some 91 = M we have |N| C w and the
atomic diagram D(91) (X-) is computable.

» A countable algebraic structure 91 is called (X-) decidable,
if for some 9 = M we have |N| C w and the complete
diagram D*(N) is (X-) computable.

Kalimullin I.Sh. Reducibilities of algebraic structures



The degree spectra

» The degree spectrum of an algebraic structure 91 is the
collection Sp (M) of all Turing degrees X such that 9 is
X-computable.

Kalimullin I.Sh. Reducibilities of algebraic structures



The degree spectra

» The degree spectrum of an algebraic structure 91 is the
collection Sp (M) of all Turing degrees X such that 9 is
X-computable.

» The strong degree spectrum of an algebraic structure 9 is

the collection Ssp (M) of all Turing degrees X such that 9
is X-decidable.

Kalimullin I.Sh. Reducibilities of algebraic structures



The degree spectra

» The degree spectrum of an algebraic structure 91 is the
collection Sp (M) of all Turing degrees X such that 9 is
X-computable.

» The strong degree spectrum of an algebraic structure 9 is
the collection Ssp (M) of all Turing degrees X such that 9
is X-decidable.

» If the degree spectum of an algebraic structure 9 has a
least element a (that is, if Sp (9) = {X|x > a}), then we
say that 9t has the degree a.
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The degree spectra

» Fact 1. (Richter, 1981) Each Turing degree is the degree of
some algebraic structure.

» Fact 2. (Richter, 1981) There are structures, which do not
have a degree, e.g. non-computable linear orders.

» Fact 3. (Folklore) The union of spectra of two structures,
which have incomparable degrees, is not a degree spectrum,
that is {X|x > b} U {X|x > ¢} is not a degree spectrum if b
and € are incomparable.

» In fact, for each countable 91 and every incomparable
b,c € Sp (9M) there is a a,a’ < ¢/, incomparable with b
and € s.t. a € Sp (IM).
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Reducibilities

» We say that a structure 2 is reducible to a structure B

(2 <, B), if Sp(B) < Sp (A).
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Reducibilities

» We say that a structure 2 is reducible to a structure ‘B
(2 <, B), if Sp(B) C Sp (A).

» We say that a structure 2 is uniformly reducible to a
structure B (A <, B), if there is an uniform procedure
which builds a copy of the structure 2l given any copy of
the structure 8. That is, there is a Turing operator ® such
that for all M, |MN] C w,

N=B — (IM=A)[M| C w & D) = ¢PCV].
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Enumeration reducibility

» For A C w define the undirected graph &num(A), consisting
from disjoint n + 3-cycles, where n € A.
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Enumeration reducibility

» For A C w define the undirected graph &num(A), consisting
from disjoint n + 3-cycles, where n € A.

» Then (Selman, 1971) Enum(A) <, Enum(B) <=
Enum(A) <y Enum(B) <— A < B.

» Enum(A) has a degree <= A =, graph (f), f is a total
function. In this case, the e-degree of the set A is called
total.

» (Knight, Ash) A structure 2 has a degree iff there are a
finite collection & from 2 and a total function f such that
Ths(2l, &) = graph (f) and deg(f) € Sp ().

» Hence, if 2 has a degree and B <, 2, then B <, (2, &) for
some & from 2.
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Uniformity vs. non-Uniformity

Theorem. (2009). If a structure 2 has a jump degree but has not
a degree, then there is a structure 8 such that B <, A and
B Ly (2, @) for every & from 2.
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Uniformity vs. non-Uniformity

Theorem. (2009). If a structure 2 has a jump degree but has not
a degree, then there is a structure 8 such that B <, A and
B Ly (2, @) for every & from 2.

» The jump degree of a structure 2 is the least Turing jump
of the elements of Sp (2).
» (Downey, Coles, Slaman, 2000) The structure Enum(A)

always has a jump degree.

Corollary. The following conditions are equivalent:
1) The e-degree of a set A is total,
2) (VB)[B <, ¢num(A) = B <y Enum(A)].
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Enumeration degrees

» Let Dg = 2%/ =¢ be the upper semilattice of e-degrees with
the least element Og.
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Lempp’s Question

» Let a structure 9 is X-computable for every
non-computable X. Must 9t be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007).
There are structures 9t such that Sp (9) = {x|x > 0} and
1) (Slaman). Th(90t) has not computable models.

2) (Wehner). Th(90t) has computable models.

3) (Hirschfeldt). Ssp () = {x|x > 0}.

Corollary. Both D, and Dy, contain the least nonzero element.

Theorem (2009). There is a computable structure 9t such that
Ssp (M) = {x|x > 0}.
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Almost computable strustures

» We say that the structure 91 is almost computable, if
w({X | deg(X) € Sp (M)}) = 1 in the uniform probability
space 2%,
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» We say that the structure 91 is almost computable, if
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space 2%,

» (Kalimullin, Csima, 2007). There are almost computable
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» (Goncharov, McCoy, Miller, Knight, Solomon, Harizanov,
2005). There are almost computable non-arithmetical
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Almost computable strustures

» We say that the structure 91 is almost computable, if
w({X | deg(X) € Sp (M)}) = 1 in the uniform probability
space 2%,

» (Kalimullin, Csima, 2007). There are almost computable
structures 2 such that D\ Sp (2() is uncountable.

» (Goncharov, McCoy, Miller, Knight, Solomon, Harizanov,
2005). There are almost computable non-arithmetical
structures.

Question. Is there an arithmetical degree which computes every
almost computable structure?
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The relativized Lempp’s question I

» Let a structure 9 is X-computable for every X ¢ A9. Must
M be A%-computable?
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The relativized Lempp’s question I

» Let a structure 9 is X-computable for every X ¢ A9. Must
M be A%-computable?

» Let a structure 91 is X-computable for every X €1 A. Must
M be A-computable?

Theorem. (2008). There is a degree @ < 0” such that
Sp (M) # {x|x £ a} for every M.
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» Let a structure 9 is X-computable for every X ¢ A9. Must
M be Ad-computable?

» Let a structure 91 is X-computable for every X €1 A. Must
M be A-computable?

Theorem. (2008). There is a degree @ < 0” such that
Sp (M) # {x|x £ a} for every M.

To find such an a < 04 we prove that for every incomparable b
and ¢ there exists an @ < (b U ¢)®*) such that for each 9

{b,c} CSp (M) — a e Sp(M).
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The relativized Lempp’s question I

» Let a structure 9 is X-computable for every X ¢ A9. Must
M be Ad-computable?

» Let a structure 91 is X-computable for every X €1 A. Must
M be A-computable?

Theorem. (2008). There is a degree @ < 0” such that
Sp (M) # {x|x £ a} for every M.

To find such an a < 04 we prove that for every incomparable b
and ¢ there exists an @ < (b U ¢)®*) such that for each 9

{b,c} C Sp (M) — a < Sp(M).

To make a < 0” we prove that for every ¢ > 0 there exist
a,b < ¢” such that for each 9

{b,c} CSp (M) = a < Sp(M).
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The relativized Lempp’s question 11
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M be A%-computable?
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» Let a structure 9t is X-computable for every X ¢ A9 Must
M be A%-computable?

» Let a structure 97 is X-computable for every X £t A. Must
M be A-computable?

Theorem. (2007,2008). If a degree @ is low or c.e. then there is a
structure M such that Sp (M) = {x|x £ a}.

Theorem. Let C be a uniformly Ag family which is closed
downwards under <q . Then there is a structure 9 such that

Sp (M) = {deg(X)|X" ¢ C}.
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The relativized Lempp’s question 11

» Let a structure 9t is X-computable for every X ¢ A9 Must
M be A%-computable?

» Let a structure 97 is X-computable for every X £t A. Must
M be A-computable?

Theorem. (2007,2008). If a degree @ is low or c.e. then there is a
structure M such that Sp (M) = {x|x £ a}.

Theorem. Let C be a uniformly Ag family which is closed
downwards under <q . Then there is a structure 9 such that
Sp () = {deg(X)|X’ ¢ C}.

In particular, Sp (91) can consist from the non-superlow
degrees.
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The idea of the proofs

> Sp (M) = {x|x > 0}: (Wehner, 1999)

S={{n}e U] Uis finite & U # Wp}.
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> Sp (M) = {x|x > 0}: (Wehner, 1999)

S={{n®U|Uis finite & U# W,}.
> Sp (M) = {x | x £ a}: a = deg(A) is low

S ={{n} & U|U is finite & U # W4}
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The idea of the proofs

> Sp (M) = {x|x > 0}: (Wehner, 1999)

S={{n®U|Uis finite & U# W,}.
> Sp (M) = {x | x £ a}: a = deg(A) is low

S ={{n} & U|U is finite & U # W4}
» Sp (M) = {x|x' ¢C}:C=mg (v), e A

S ={{n} @ U|U is finite & U # v(n)}.

For the Uniformity vs. non-Uniformity result v(n) = win,
» Sp (M) = {x|x £ a}: a =deg(A), Ais c.e.

S = {{n}@U|U is the image of an increasing p.r.f & U # W2},
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Properties of D, and Dy,

» If a =b nc for low degrees a, b and ¢, then
{x|x £ ¢} = {x|x £ a} U {x|x £ b}. Hence, D, possess

nontrivial infs.
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Properties of D, and Dy,

» If a =b nc for low degrees a, b and ¢, then
{x|x £ ¢} = {x|x £ a} U {x|x £ b}. Hence, D, possess
nontrivial infs.

» Each countable distributive lattice is embeddable into D,
preserving sups and infs.

» If both two structures have degrees which are low and
incomparable to each other, then these two structures have
no infimum in D, and D,,. Hence, D, and D, are not
lattices.
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Properties of D, and Dy,

» If a =b nc for low degrees a, b and ¢, then
{x|x £ ¢} = {x|x £ a} U {x|x £ b}. Hence, D, possess
nontrivial infs.

» Each countable distributive lattice is embeddable into D,
preserving sups and infs.

» If both two structures have degrees which are low and
incomparable to each other, then these two structures have
no infimum in D, and D,,. Hence, D, and D, are not
lattices.

» There are nonprincipal ideals in D, and Dy, which have
supremurn.
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E-spectra and e-reducibilities

» For a structure 91 and an e-degree X we write 91 <g X if
for some 9 = M, |N| C w we have D(N) <e X.
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E-spectra and e-reducibilities

» For a structure 91 and an e-degree X we write 91 <g X if
for some 9 = M, |N| C w we have D(N) <e X.

» The e-spectrum of algebraic structure 991 is the collection
e-Sp (M) of all e-degrees X such that M <g X.

» We say that a structure 2 is e-reducible to a structure 8
(2 <er B), if e-Sp (B) C e-Sp (A).
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E-spectra and e-reducibilities

» For a structure 91 and an e-degree X we write 91 <g X if
for some 9 = M, |N| C w we have D(N) <e X.

» The e-spectrum of algebraic structure 991 is the collection
e-Sp (M) of all e-degrees X such that I < X.

» We say that a structure 2 is e-reducible to a structure 8
(2 <er B), if e-Sp (B) C e-Sp (A).

» We say that a structure 2 is uniformly e-reducible to a
structure B (20 <yer B), if there is an e-operator ¢ such
that for all M, |N| C w,

N=B = (IM =AM C w & D) = d(D(MN))].
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An e-spectrum of a structure

Theorem. (2009). There is a structure 9t such that
e-Sp (M) = {x € Dg|x > 0}.
In fact M codes the family S = {{n} ® U|U is c.e. & U # Wy}.
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An e-spectrum of a structure

Theorem. (2009). There is a structure 9t such that
e-Sp (M) = {x € Dg|x > 0}.
In fact M codes the family S = {{n} ® U|U is c.e. & U # Wy}.

Corollary. Dgr contains the least nonzero element.
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Relationships between the reducibilities, I

(Stukachev, 2007).

2 is Y-definable in HF(B) without parameters

4
A Suer % - A Ser %
4 4

A<y B = A<D
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Relationships between the reducibilities, II

Theorem.

1.

ot

A <yer B does not imply that 2 is X-definable in HF(B);

2. A <yr B does not imply A <gr B;
3.
4. 2 Ser B and A Sur B do not lmply A Suer %,

A <er B does not imply A <, B;

A <, B does not imply A <g M or A <y B.

Everything above is correct up to finite constant enrichments.
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Relationships between the reducibilities, III

Are the counterexamples from above are natural?
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Relationships between the reducibilities, III

Are the counterexamples from above are natural?

1. A <yer B does not imply that 2 is X-definable in HF(*B);
2 codes the family {{n} & U | Uis c.e. & U # Wp}.
B codes the family of all infinite c.e. sets.
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Relationships between the reducibilities, III

Are the counterexamples from above are natural?

1. A <yer B does not imply that 2 is X-definable in HF(*B);
2 codes the family {{n} & U | Uis c.e. & U # Wp}.
B codes the family of all infinite c.e. sets.
2. A <yr B does not imply A <g B;
2 codes the family of all graphs of computable functions.
B codes the family of all infinite c.e. sets.
o

=W
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