Algorithmic reducibilities of algebraic structures

Kalimullin I.Sh.

Kazan State University e-mail:Iskander.Kalimullin@ksu.ru

Workshop on Computability Theory 2009, Sofia

Kalimullin I.Sh. Reducibilities of algebraic structures

▶ A countable algebraic structure \mathfrak{M} is called (\mathbf{x}_{-}) computable, if for some $\mathfrak{N} \cong \mathfrak{M}$ we have $|\mathfrak{N}| \subseteq \omega$ and the atomic diagram $D(\mathfrak{N})$ (\mathbf{x}_{-}) is computable.

- ▶ A countable algebraic structure \mathfrak{M} is called (\mathbf{x}_{-}) computable, if for some $\mathfrak{N} \cong \mathfrak{M}$ we have $|\mathfrak{N}| \subseteq \omega$ and the atomic diagram $D(\mathfrak{N})$ (\mathbf{x}_{-}) is computable.
- ▶ A countable algebraic structure \mathfrak{M} is called $(\mathbf{x}$ -) decidable, if for some $\mathfrak{N} \cong \mathfrak{M}$ we have $|\mathfrak{N}| \subseteq \omega$ and the complete diagram $D^*(\mathfrak{N})$ is $(\mathbf{x}$ -) computable.

- ▶ A countable algebraic structure \mathfrak{M} is called (\mathbf{x}_{-}) computable, if for some $\mathfrak{N} \cong \mathfrak{M}$ we have $|\mathfrak{N}| \subseteq \omega$ and the atomic diagram $D(\mathfrak{N})$ (\mathbf{x}_{-}) is computable.
- ▶ A countable algebraic structure \mathfrak{M} is called $(\mathbf{x}$ -) decidable, if for some $\mathfrak{N} \cong \mathfrak{M}$ we have $|\mathfrak{N}| \subseteq \omega$ and the complete diagram $D^*(\mathfrak{N})$ is $(\mathbf{x}$ -) computable.

► The degree spectrum of an algebraic structure 𝔐 is the collection Sp (𝔐) of all Turing degrees x such that 𝔐 is x-computable.

- ► The degree spectrum of an algebraic structure 𝔐 is the collection Sp(𝔐) of all Turing degrees x such that 𝔐 is x-computable.
- ▶ The strong degree spectrum of an algebraic structure 𝔐 is the collection **Ssp**(𝔐) of all Turing degrees **x** such that 𝔐 is **x**-decidable.

- ▶ The degree spectrum of an algebraic structure 𝔐 is the collection Sp(𝔐) of all Turing degrees x such that 𝔐 is x-computable.
- ▶ The strong degree spectrum of an algebraic structure 𝔐 is the collection **Ssp**(𝔐) of all Turing degrees **x** such that 𝔐 is **x**-decidable.
- ▶ If the degree spectum of an algebraic structure \mathfrak{M} has a least element **a** (that is, if $Sp(\mathfrak{M}) = \{x | x \ge a\}$), then we say that \mathfrak{M} has the degree **a**.

▶ Fact 1. (Richter, 1981) Each Turing degree is the degree of some algebraic structure.

- ▶ Fact 1. (Richter, 1981) Each Turing degree is the degree of some algebraic structure.
- ▶ Fact 2. (Richter, 1981) There are structures, which do not have a degree, e.g. non-computable linear orders.

- ▶ Fact 1. (Richter, 1981) Each Turing degree is the degree of some algebraic structure.
- ▶ Fact 2. (Richter, 1981) There are structures, which do not have a degree, e.g. non-computable linear orders.
- Fact 3. (Folklore) The union of spectra of two structures, which have incomparable degrees, is not a degree spectrum, that is {x|x ≥ b} ∪ {x|x ≥ c} is not a degree spectrum if b and c are incomparable.

- ▶ Fact 1. (Richter, 1981) Each Turing degree is the degree of some algebraic structure.
- ▶ Fact 2. (Richter, 1981) There are structures, which do not have a degree, e.g. non-computable linear orders.
- Fact 3. (Folklore) The union of spectra of two structures, which have incomparable degrees, is not a degree spectrum, that is {x|x ≥ b} ∪ {x|x ≥ c} is not a degree spectrum if b and c are incomparable.
- In fact, for each countable 𝔐 and every incomparable
 b, c ∈ Sp (𝔐) there is a a, a' ≤ c', incomparable with b
 and c s.t. a ∈ Sp (𝔐).

▶ We say that a structure \mathfrak{A} is reducible to a structure \mathfrak{B} $(\mathfrak{A} \leq_r \mathfrak{B})$, if $\mathsf{Sp}(\mathfrak{B}) \subseteq \mathsf{Sp}(\mathfrak{A})$.

▶ ★ 臣 ▶ ★ 臣 ▶ …

크

- ▶ We say that a structure \mathfrak{A} is reducible to a structure \mathfrak{B} $(\mathfrak{A} \leq_{r} \mathfrak{B})$, if $\mathsf{Sp}(\mathfrak{B}) \subseteq \mathsf{Sp}(\mathfrak{A})$.
- ▶ We say that a structure \mathfrak{A} is uniformly reducible to a structure \mathfrak{B} ($\mathfrak{A} \leq_{ur} \mathfrak{B}$), if there is an uniform procedure which builds a copy of the structure \mathfrak{A} given any copy of the structure \mathfrak{B} . That is, there is a Turing operator Φ such that for all \mathfrak{N} , $|\mathfrak{N}| \subseteq \omega$,

$$\mathfrak{N}\cong\mathfrak{B}\implies (\exists\mathfrak{M}\cong\mathfrak{A})[|\mathfrak{M}|\subseteq\omega\&\mathit{D}(\mathfrak{M})=\Phi^{\mathit{D}(\mathfrak{N})}].$$

▶ For $A \subseteq \omega$ define the undirected graph $\mathfrak{Enum}(A)$, consisting from disjoint n + 3-cycles, where $n \in A$.

• • = • • = •

- ▶ For $A \subseteq \omega$ define the undirected graph $\mathfrak{Enum}(A)$, consisting from disjoint n + 3-cycles, where $n \in A$.
- ▶ Then (Selman, 1971) $\mathfrak{Enum}(A) \leq_r \mathfrak{Enum}(B) \iff \mathfrak{Enum}(A) \leq_{ur} \mathfrak{Enum}(B) \iff A \leq_e B.$

- ▶ For $A \subseteq \omega$ define the undirected graph $\mathfrak{Enum}(A)$, consisting from disjoint n + 3-cycles, where $n \in A$.
- ▶ Then (Selman, 1971) $\mathfrak{Enum}(A) \leq_r \mathfrak{Enum}(B) \iff \mathfrak{Enum}(A) \leq_{ur} \mathfrak{Enum}(B) \iff A \leq_e B.$
- $\mathfrak{Enum}(A)$ has a degree $\iff A \equiv_e \operatorname{graph}(f)$, f is a total function. In this case, the e-degree of the set A is called total.

- ▶ For $A \subseteq \omega$ define the undirected graph $\mathfrak{Enum}(A)$, consisting from disjoint n + 3-cycles, where $n \in A$.
- ▶ Then (Selman, 1971) $\mathfrak{Enum}(A) \leq_r \mathfrak{Enum}(B) \iff \mathfrak{Enum}(A) \leq_{ur} \mathfrak{Enum}(B) \iff A \leq_e B.$
- $\mathfrak{Enum}(A)$ has a degree $\iff A \equiv_e \operatorname{graph}(f)$, f is a total function. In this case, the e-degree of the set A is called total.
- ▶ (Knight, Ash) A structure \mathfrak{A} has a degree iff there are a finite collection \vec{a} from \mathfrak{A} and a total function f such that $\operatorname{Th}_{\exists}(\mathfrak{A}, \vec{a}) \equiv_{e} \operatorname{graph}(f)$ and $\operatorname{deg}(f) \in \operatorname{Sp}(\mathfrak{A})$.

- ▶ For $A \subseteq \omega$ define the undirected graph $\mathfrak{Enum}(A)$, consisting from disjoint n + 3-cycles, where $n \in A$.
- ▶ Then (Selman, 1971) $\mathfrak{Enum}(A) \leq_r \mathfrak{Enum}(B) \iff \mathfrak{Enum}(A) \leq_{ur} \mathfrak{Enum}(B) \iff A \leq_e B.$
- $\mathfrak{Enum}(A)$ has a degree $\iff A \equiv_e \operatorname{graph}(f)$, f is a total function. In this case, the e-degree of the set A is called total.
- ▶ (Knight, Ash) A structure \mathfrak{A} has a degree iff there are a finite collection \vec{a} from \mathfrak{A} and a total function f such that $\operatorname{Th}_{\exists}(\mathfrak{A}, \vec{a}) \equiv_{e} \operatorname{graph}(f)$ and $\operatorname{deg}(f) \in \operatorname{Sp}(\mathfrak{A})$.
- ▶ Hence, if \mathfrak{A} has a degree and $\mathfrak{B} \leq_r \mathfrak{A}$, then $\mathfrak{B} \leq_{ur} (\mathfrak{A}, \vec{a})$ for some \vec{a} from \mathfrak{A} .

• • = • • = •

▶ The jump degree of a structure \mathfrak{A} is the least Turing jump of the elements of $Sp(\mathfrak{A})$.

- ▶ The jump degree of a structure \mathfrak{A} is the least Turing jump of the elements of **Sp**(\mathfrak{A}).
- ► (Downey, Coles, Slaman, 2000) The structure $\mathfrak{Enum}(A)$ always has a jump degree.

- The jump degree of a structure \mathfrak{A} is the least Turing jump of the elements of $Sp(\mathfrak{A})$.
- ► (Downey, Coles, Slaman, 2000) The structure $\mathfrak{Enum}(A)$ always has a jump degree.

Corollary. The following conditions are equivalent:

1) The e-degree of a set \boldsymbol{A} is total;

2) $(\forall \mathfrak{B})[\mathfrak{B} \leq_r \mathfrak{Enum}(A) \implies \mathfrak{B} \leq_{ur} \mathfrak{Enum}(A)].$

▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.

-2

- ▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.
- ▶ There is no least element in $\mathbf{D}_e \setminus \{\mathbf{0}_e\}$.

A B F A B F

- ▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.
- ▶ There is no least element in $\mathbf{D}_e \setminus \{\mathbf{0}_e\}$.
- ▶ (Sorbi, 1997) **D**_e is not a lattice.

- ▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.
- There is no least element in $\mathbf{D}_{e} \setminus \{\mathbf{0}_{e}\}$.
- (Sorbi, 1997) \mathbf{D}_{e} is not a lattice.
- (Sorbi, 1997) Every countable distributive lattice is emebeddable into D_e preserving sups and infs.

- ▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.
- There is no least element in $\mathbf{D}_{e} \setminus \{\mathbf{0}_{e}\}$.
- (Sorbi, 1997) \mathbf{D}_{e} is not a lattice.
- (Sorbi, 1997) Every countable distributive lattice is emebeddable into D_e preserving sups and infs.
- ► (Sorbi?) Each non-principal ideal in the D_e has no supremum.

- ▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.
- There is no least element in $\mathbf{D}_{e} \setminus \{\mathbf{0}_{e}\}$.
- (Sorbi, 1997) \mathbf{D}_{e} is not a lattice.
- (Sorbi, 1997) Every countable distributive lattice is emebeddable into D_e preserving sups and infs.
- ► (Sorbi?) Each non-principal ideal in the D_e has no supremum.
- ▶ What about the upper semilattices D_r and D_{ur} ?

- ▶ Let $\mathbf{D}_{e} = 2^{\omega} / \equiv_{e}$ be the upper semilattice of e-degrees with the least element $\mathbf{0}_{e}$.
- There is no least element in $\mathbf{D}_{e} \setminus \{\mathbf{0}_{e}\}$.
- (Sorbi, 1997) \mathbf{D}_{e} is not a lattice.
- (Sorbi, 1997) Every countable distributive lattice is emebeddable into D_e preserving sups and infs.
- ► (Sorbi?) Each non-principal ideal in the D_e has no supremum.
- ▶ What about the upper semilattices D_r and D_{ur} ?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $Sp(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$ and

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $Sp(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$ and 1) (Slaman). $Th(\mathfrak{M})$ has not computable models.

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $\mathbf{Sp}(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$ and 1) (Slaman). $Th(\mathfrak{M})$ has not computable models. 2) (Wehner). $Th(\mathfrak{M})$ has computable models.

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $\mathbf{Sp}(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$ and 1) (Slaman). $Th(\mathfrak{M})$ has not computable models. 2) (Wehner). $Th(\mathfrak{M})$ has computable models. 2) (Unred fold). $\mathbf{Sep}(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$

3) (Hirschfeldt). $Ssp(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}.$

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $\mathbf{Sp}(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$ and 1) (Slaman). $Th(\mathfrak{M})$ has not computable models. 2) (Wehner). $Th(\mathfrak{M})$ has computable models. 2) (Unred fold). $\mathbf{Sep}(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}$

3) (Hirschfeldt). $Ssp(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}.$

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $\mathsf{Sp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} > \mathsf{0}\}$ and 1) (Slaman). $Th(\mathfrak{M})$ has not computable models. 2) (Wehner). $Th(\mathfrak{M})$ has computable models. 3) (Hirschfeldt). $\mathsf{Ssp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} > \mathsf{0}\}.$

Corollary. Both \mathbf{D}_r and \mathbf{D}_{ur} contain the least nonzero element.

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007). There are structures \mathfrak{M} such that $\mathsf{Sp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} > \mathsf{0}\}$ and 1) (Slaman). $Th(\mathfrak{M})$ has not computable models. 2) (Wehner). $Th(\mathfrak{M})$ has computable models. 3) (Hirschfeldt). $\mathsf{Ssp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} > \mathsf{0}\}.$

Corollary. Both \mathbf{D}_r and \mathbf{D}_{ur} contain the least nonzero element.

Theorem (2009). There is a computable structure \mathfrak{M} such that $Ssp(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} > \mathbf{0}\}.$

▶ We say that the structure \mathfrak{M} is almost computable, if $\mu(\{X \mid \deg(X) \in Sp(\mathfrak{M})\}) = 1$ in the uniform probability space 2^{ω} .

Almost computable strustures

- ▶ We say that the structure \mathfrak{M} is almost computable, if $\mu(\{X \mid \deg(X) \in Sp(\mathfrak{M})\}) = 1$ in the uniform probability space 2^{ω} .
- ▶ (Kalimullin, Csima, 2007). There are almost computable structures A such that D \ Sp(A) is uncountable.

Almost computable strustures

- ▶ We say that the structure \mathfrak{M} is almost computable, if $\mu(\{X \mid \deg(X) \in Sp(\mathfrak{M})\}) = 1$ in the uniform probability space 2^{ω} .
- ▶ (Kalimullin, Csima, 2007). There are almost computable structures A such that D \ Sp(A) is uncountable.
- ▶ (Goncharov, McCoy, Miller, Knight, Solomon, Harizanov, 2005). There are almost computable non-arithmetical structures.

Almost computable strustures

- ▶ We say that the structure \mathfrak{M} is almost computable, if $\mu(\{X \mid \deg(X) \in Sp(\mathfrak{M})\}) = 1$ in the uniform probability space 2^{ω} .
- ▶ (Kalimullin, Csima, 2007). There are almost computable structures A such that D \ Sp(A) is uncountable.
- ▶ (Goncharov, McCoy, Miller, Knight, Solomon, Harizanov, 2005). There are almost computable non-arithmetical structures.

Question. Is there an arithmetical degree which computes every almost computable structure?

► Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is *X*-computable for every $X \not\leq_T A$. Must \mathfrak{M} be *A*-computable?

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

Theorem. (2008). There is a degree $\mathbf{a} \leq \mathbf{0}''$ such that $\mathbf{Sp}(\mathfrak{M}) \neq \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\}$ for every \mathfrak{M} .

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

Theorem. (2008). There is a degree $\mathbf{a} \leq \mathbf{0}''$ such that $\mathbf{Sp}(\mathfrak{M}) \neq \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\}$ for every \mathfrak{M} .

To find such an $\mathbf{a} \leq \mathbf{0}^{(4)}$ we prove that for every incomparable **b** and **c** there exists an $\mathbf{a} \leq (\mathbf{b} \cup \mathbf{c})^{(4)}$ such that for each \mathfrak{M}

$$\{\mathsf{b},\mathsf{c}\}\subseteq\mathsf{Sp}\,(\mathfrak{M})\implies\mathsf{a}\in\mathsf{Sp}\,(\mathfrak{M}).$$

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

Theorem. (2008). There is a degree $\mathbf{a} \leq \mathbf{0}''$ such that $\mathbf{Sp}(\mathfrak{M}) \neq \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\}$ for every \mathfrak{M} .

To find such an $\mathbf{a} \leq \mathbf{0}^{(4)}$ we prove that for every incomparable **b** and **c** there exists an $\mathbf{a} \leq (\mathbf{b} \cup \mathbf{c})^{(4)}$ such that for each \mathfrak{M}

$$\{\mathsf{b},\mathsf{c}\}\subseteq\mathsf{Sp}\,(\mathfrak{M})\implies\mathsf{a}\in\mathsf{Sp}\,(\mathfrak{M}).$$

To make $\mathbf{a} \leq \mathbf{0}''$ we prove that for every $\mathbf{c} > \mathbf{0}$ there exist $\mathbf{a}, \mathbf{b} \leq \mathbf{c}''$ such that for each \mathfrak{M}

$$\left\{ \textbf{b},\textbf{c}\right\} \subseteq \textbf{Sp}\left(\mathfrak{M}\right) \implies \textbf{a}\in \textbf{Sp}\left(\mathfrak{M}\right).$$

▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

Theorem. (2007,2008). If a degree **a** is low or c.e. then there is a structure \mathfrak{M} such that $\mathsf{Sp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} \leq \mathsf{a}\}.$

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

Theorem. (2007,2008). If a degree **a** is low or c.e. then there is a structure \mathfrak{M} such that $\mathsf{Sp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} \leq \mathsf{a}\}.$

Theorem. Let \mathcal{C} be a uniformly Δ_2^0 family which is closed downwards under \leq_1 . Then there is a structure \mathfrak{M} such that $\operatorname{Sp}(\mathfrak{M}) = \{\operatorname{deg}(X) | X' \notin \mathcal{C}\}.$

- ▶ Let a structure \mathfrak{M} is X-computable for every $X \notin \Delta_n^0$. Must \mathfrak{M} be Δ_n^0 -computable?
- ▶ Let a structure \mathfrak{M} is X-computable for every $X \not\leq_T A$. Must \mathfrak{M} be A-computable?

Theorem. (2007,2008). If a degree **a** is low or c.e. then there is a structure \mathfrak{M} such that $\mathsf{Sp}(\mathfrak{M}) = \{\mathsf{x} | \mathsf{x} \leq \mathsf{a}\}.$

Theorem. Let \mathcal{C} be a uniformly Δ_2^0 family which is closed downwards under \leq_1 . Then there is a structure \mathfrak{M} such that $\mathbf{Sp}(\mathfrak{M}) = \{ \deg(X) | X' \notin \mathcal{C} \}$. In particular, $\mathbf{Sp}(\mathfrak{M})$ can consist from the non-superlow degrees.

▶ **Sp** $(\mathfrak{M}) = \{ \mathbf{x} | \mathbf{x} > \mathbf{0} \}$: (Wehner, 1999)

 $\mathcal{S} = \{\{n\} \oplus U \mid U \text{ is finite } \& U \neq W_n\}.$

• • = • • = •

크

4

For the Uniformity vs. non-Uniformity result $\nu(n) = W_n^{X_n}$.

(4) (3) (4) (4) (4)

-2

For the Uniformity vs. non-Uniformity result $\nu(n) = W_n^{\chi_n}$. > $Sp(\mathfrak{M}) = \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\}$: $\mathbf{a} = deg(A), A$ is c.e.

 $\mathcal{S} = \{\{n\} \oplus U | U \text{ is the image of an increasing p.r.f } \& U \neq W_n^A\}.$

If a = b ∩ c for low degrees a, b and c, then
 {x|x ≤ c} = {x|x ≤ a} ∪ {x|x ≤ b}. Hence, D_r possess nontrivial infs.

- ▶ If $\mathbf{a} = \mathbf{b} \cap \mathbf{c}$ for low degrees \mathbf{a} , \mathbf{b} and \mathbf{c} , then $\{\mathbf{x} | \mathbf{x} \leq \mathbf{c}\} = \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\} \cup \{\mathbf{x} | \mathbf{x} \leq \mathbf{b}\}$. Hence, \mathbf{D}_r possess nontrivial infs.
- ▶ Each countable distributive lattice is embeddable into D_r preserving sups and infs.

- ▶ If $\mathbf{a} = \mathbf{b} \cap \mathbf{c}$ for low degrees \mathbf{a} , \mathbf{b} and \mathbf{c} , then $\{\mathbf{x} | \mathbf{x} \leq \mathbf{c}\} = \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\} \cup \{\mathbf{x} | \mathbf{x} \leq \mathbf{b}\}$. Hence, \mathbf{D}_r possess nontrivial infs.
- ▶ Each countable distributive lattice is embeddable into D_r preserving sups and infs.
- ▶ If both two structures have degrees which are low and incomparable to each other, then these two structures have no infimum in D_r and D_{ur} . Hence, D_r and D_{ur} are not lattices.

- ▶ If $\mathbf{a} = \mathbf{b} \cap \mathbf{c}$ for low degrees \mathbf{a} , \mathbf{b} and \mathbf{c} , then $\{\mathbf{x} | \mathbf{x} \leq \mathbf{c}\} = \{\mathbf{x} | \mathbf{x} \leq \mathbf{a}\} \cup \{\mathbf{x} | \mathbf{x} \leq \mathbf{b}\}$. Hence, \mathbf{D}_r possess nontrivial infs.
- ► Each countable distributive lattice is embeddable into D_r preserving sups and infs.
- ▶ If both two structures have degrees which are low and incomparable to each other, then these two structures have no infimum in D_r and D_{ur} . Hence, D_r and D_{ur} are not lattices.
- ▶ There are nonprincipal ideals in \mathbf{D}_r and \mathbf{D}_{ur} which have supremum.

▶ For a structure \mathfrak{M} and an e-degree \mathbf{X} we write $\mathfrak{M} \leq_{e} \mathbf{X}$, if for some $\mathfrak{N} \cong \mathfrak{M}$, $|\mathfrak{N}| \subseteq \omega$ we have $D(\mathfrak{N}) \leq_{e} \mathbf{X}$.

E-spectra and e-reducibilities

- ▶ For a structure \mathfrak{M} and an e-degree \mathbf{X} we write $\mathfrak{M} \leq_{e} \mathbf{X}$, if for some $\mathfrak{N} \cong \mathfrak{M}$, $|\mathfrak{N}| \subseteq \omega$ we have $D(\mathfrak{N}) \leq_{e} \mathbf{X}$.
- ▶ The e-spectrum of algebraic structure \mathfrak{M} is the collection e-Sp(\mathfrak{M}) of all e-degrees **x** such that $\mathfrak{M} \leq_{e} \mathbf{x}$.

E-spectra and e-reducibilities

- ▶ For a structure \mathfrak{M} and an e-degree \mathbf{X} we write $\mathfrak{M} \leq_{e} \mathbf{X}$, if for some $\mathfrak{N} \cong \mathfrak{M}$, $|\mathfrak{N}| \subseteq \omega$ we have $D(\mathfrak{N}) \leq_{e} \mathbf{X}$.
- ▶ The e-spectrum of algebraic structure \mathfrak{M} is the collection e-Sp(\mathfrak{M}) of all e-degrees **x** such that $\mathfrak{M} \leq_{e} \mathbf{x}$.
- ▶ We say that a structure \mathfrak{A} is e-reducible to a structure \mathfrak{B} $(\mathfrak{A} \leq_{er} \mathfrak{B})$, if e-Sp $(\mathfrak{B}) \subseteq e$ -Sp (\mathfrak{A}) .

E-spectra and e-reducibilities

- ▶ For a structure \mathfrak{M} and an e-degree \mathbf{X} we write $\mathfrak{M} \leq_{e} \mathbf{X}$, if for some $\mathfrak{N} \cong \mathfrak{M}$, $|\mathfrak{N}| \subseteq \omega$ we have $D(\mathfrak{N}) \leq_{e} \mathbf{X}$.
- ▶ The e-spectrum of algebraic structure \mathfrak{M} is the collection e-Sp(\mathfrak{M}) of all e-degrees **x** such that $\mathfrak{M} \leq_{e} \mathbf{x}$.
- ▶ We say that a structure \mathfrak{A} is e-reducible to a structure \mathfrak{B} $(\mathfrak{A} \leq_{er} \mathfrak{B})$, if e-Sp $(\mathfrak{B}) \subseteq e$ -Sp (\mathfrak{A}) .
- ▶ We say that a structure \mathfrak{A} is uniformly e-reducible to a structure \mathfrak{B} ($\mathfrak{A} \leq_{uer} \mathfrak{B}$), if there is an e-operator Φ such that for all \mathfrak{N} , $|\mathfrak{N}| \subseteq \omega$,

$$\mathfrak{N}\cong\mathfrak{B}\implies (\exists\mathfrak{M}\cong\mathfrak{A})[|\mathfrak{M}|\subseteq\omega\&\mathit{D}(\mathfrak{M})=\Phi(\mathit{D}(\mathfrak{N}))].$$

Theorem. (2009). There is a structure \mathfrak{M} such that \mathbf{e} -Sp $(\mathfrak{M}) = {\mathbf{x} \in \mathbf{D}_e | \mathbf{x} > \mathbf{0}}.$ In fact \mathfrak{M} codes the family $\mathcal{S} = {\{n\} \oplus U | U \text{ is c.e. } \& U \neq W_n\}}.$

Theorem. (2009). There is a structure \mathfrak{M} such that \mathbf{e} -Sp $(\mathfrak{M}) = {\mathbf{x} \in \mathbf{D}_e | \mathbf{x} > \mathbf{0}}.$ In fact \mathfrak{M} codes the family $\mathcal{S} = {\{n\} \oplus U | U \text{ is c.e. } \& U \neq W_n\}}.$

Corollary. \mathbf{D}_{er} contains the least nonzero element.

(Stukachev, 2007).

 $\begin{array}{cccc} \mathfrak{A} \text{ is } \Sigma\text{-definable in }\mathbb{HF}(\mathfrak{B}) \text{ without parameters} \\ & \Downarrow \\ \mathfrak{A} \leq_{uer} \mathfrak{B} \implies \mathfrak{A} \leq_{er} \mathfrak{B} \\ & \Downarrow \\ \mathfrak{A} \leq_{ur} \mathfrak{B} \implies \mathfrak{A} \leq_{r} \mathfrak{B} \end{array}$

Theorem.

- 1. $\mathfrak{A} \leq_{uer} \mathfrak{B}$ does not imply that \mathfrak{A} is Σ -definable in $\mathbb{HF}(\mathfrak{B})$;
- 2. $\mathfrak{A} \leq_{ur} \mathfrak{B}$ does not imply $\mathfrak{A} \leq_{er} \mathfrak{B}$;
- 3. $\mathfrak{A} \leq_{er} \mathfrak{B}$ does not imply $\mathfrak{A} \leq_{ur} \mathfrak{B}$;
- 4. $\mathfrak{A} \leq_{er} \mathfrak{B}$ and $\mathfrak{A} \leq_{ur} \mathfrak{B}$ do not imply $\mathfrak{A} \leq_{uer} \mathfrak{B}$;
- 5. $\mathfrak{A} \leq_{r} \mathfrak{B}$ does not imply $\mathfrak{A} \leq_{er} \mathfrak{M}$ or $\mathfrak{A} \leq_{ur} \mathfrak{B}$.

Everything above is correct up to finite constant enrichments.

Relationships between the reducibilities, III

Are the counterexamples from above are natural?

-2

Are the counterexamples from above are natural?

1. $\mathfrak{A} \leq_{uer} \mathfrak{B}$ does not imply that \mathfrak{A} is Σ -definable in $\mathbb{HF}(\mathfrak{B})$; \mathfrak{A} codes the family $\{\{n\} \oplus U \mid U \text{ is c.e. } \& U \neq W_n\}$. \mathfrak{B} codes the family of all infinite c.e. sets. Are the counterexamples from above are natural?

- 1. $\mathfrak{A} \leq_{uer} \mathfrak{B}$ does not imply that \mathfrak{A} is Σ -definable in $\mathbb{HF}(\mathfrak{B})$; \mathfrak{A} codes the family $\{\{n\} \oplus U \mid U \text{ is c.e. } \& U \neq W_n\}$. \mathfrak{B} codes the family of all infinite c.e. sets.
- 2. A ≤_{ur} B does not imply A ≤_{er} B;
 A codes the family of all graphs of computable functions.
 B codes the family of all infinite c.e. sets.
- 3. ?
- 4. ??
- 5. ???