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Computable structures

I A countable algebraic structure M is called (x-)
computable, if for some N ∼= M we have |N| ⊆ ω and the

atomic diagram D(N) (x-) is computable.

I A countable algebraic structure M is called (x-) decidable,
if for some N ∼= M we have |N| ⊆ ω and the complete

diagram D∗(N) is (x-) computable.
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The degree spectra

I The degree spectrum of an algebraic structure M is the

collection Sp (M) of all Turing degrees x such that M is

x-computable.

I The strong degree spectrum of an algebraic structure M is

the collection Ssp (M) of all Turing degrees x such that M

is x-decidable.
I If the degree spectum of an algebraic structure M has a

least element a (that is, if Sp (M) = {x|x ≥ a}), then we

say that M has the degree a.
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The degree spectra

I Fact 1. (Richter, 1981) Each Turing degree is the degree of

some algebraic structure.

I Fact 2. (Richter, 1981) There are structures, which do not

have a degree, e.g. non-computable linear orders.

I Fact 3. (Folklore) The union of spectra of two structures,

which have incomparable degrees, is not a degree spectrum,

that is {x|x ≥ b} ∪ {x|x ≥ c} is not a degree spectrum if b
and c are incomparable.

I In fact, for each countable M and every incomparable

b, c ∈ Sp (M) there is a a, a′ ≤ c′, incomparable with b
and c s.t. a ∈ Sp (M).
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Reducibilities

I We say that a structure A is reducible to a structure B

(A ≤r B), if Sp (B) ⊆ Sp (A).

I We say that a structure A is uniformly reducible to a

structure B (A ≤ur B), if there is an uniform procedure

which builds a copy of the structure A given any copy of

the structure B. That is, there is a Turing operator Φ such

that for all N, |N| ⊆ ω,

N ∼= B =⇒ (∃M ∼= A)[|M| ⊆ ω & D(M) = ΦD(N)].
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Enumeration reducibility

I For A ⊆ ω de�ne the undirected graph Enum(A), consisting
from disjoint n + 3-cycles, where n ∈ A.

I Then (Selman, 1971) Enum(A) ≤r Enum(B) ⇐⇒
Enum(A) ≤ur Enum(B) ⇐⇒ A ≤e B.

I Enum(A) has a degree ⇐⇒ A ≡e graph (f ), f is a total

function. In this case, the e-degree of the set A is called

total.

I (Knight, Ash) A structure A has a degree i� there are a

�nite collection ~a from A and a total function f such that

Th∃(A, ~a) ≡e graph (f ) and deg(f ) ∈ Sp (A).

I Hence, if A has a degree and B ≤r A, then B ≤ur (A, ~a) for
some ~a from A.
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Uniformity vs. non-Uniformity

Theorem. (2009). If a structure A has a jump degree but has not

a degree, then there is a structure B such that B ≤r A and

B 6≤ur (A, ~a) for every ~a from A.

I The jump degree of a structure A is the least Turing jump

of the elements of Sp (A).

I (Downey, Coles, Slaman, 2000) The structure Enum(A)
always has a jump degree.

Corollary. The following conditions are equivalent:

1) The e-degree of a set A is total;

2) (∀B)[B ≤r Enum(A) =⇒ B ≤ur Enum(A)].
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Enumeration degrees

I Let De = 2ω/ ≡e be the upper semilattice of e-degrees with

the least element 0e.

I There is no least element in De \ {0e}.
I (Sorbi, 1997) De is not a lattice.

I (Sorbi, 1997) Every countable distributive lattice is

emebeddable into De preserving sups and infs.

I (Sorbi?) Each non-principal ideal in the De has no

supremum.

I What about the upper semilattices Dr and Dur?
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Lempp's Question

I Let a structure M is X -computable for every

non-computable X . Must M be computable?

Theorem. (Slaman, 1999; Wehner, 1999; Hirschfeldt, 2007).

There are structures M such that Sp (M) = {x|x > 0} and
1) (Slaman). Th(M) has not computable models.

2) (Wehner). Th(M) has computable models.

3) (Hirschfeldt). Ssp (M) = {x|x > 0}.

Corollary. Both Dr and Dur contain the least nonzero element.

Theorem (2009). There is a computable structure M such that

Ssp (M) = {x|x > 0}.
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Almost computable strustures

I We say that the structure M is almost computable, if

µ({X | deg(X ) ∈ Sp (M)}) = 1 in the uniform probability

space 2ω.

I (Kalimullin, Csima, 2007). There are almost computable

structures A such that D \ Sp (A) is uncountable.

I (Goncharov, McCoy, Miller, Knight, Solomon, Harizanov,

2005). There are almost computable non-arithmetical

structures.

Question. Is there an arithmetical degree which computes every

almost computable structure?
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The relativized Lempp's question I

I Let a structure M is X -computable for every X 6∈ ∆0
n. Must

M be ∆0
n-computable?

I Let a structure M is X -computable for every X 6≤T A. Must

M be A-computable?

Theorem. (2008). There is a degree a ≤ 0′′ such that

Sp (M) 6= {x|x 6≤ a} for every M.

To �nd such an a ≤ 0(4) we prove that for every incomparable b
and c there exists an a ≤ (b ∪ c)(4) such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

To make a ≤ 0′′ we prove that for every c > 0 there exist

a, b ≤ c′′ such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).
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Sp (M) 6= {x|x 6≤ a} for every M.

To �nd such an a ≤ 0(4) we prove that for every incomparable b
and c there exists an a ≤ (b ∪ c)(4) such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

To make a ≤ 0′′ we prove that for every c > 0 there exist

a, b ≤ c′′ such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

Kalimullin I.Sh. Reducibilities of algebraic structures



The relativized Lempp's question I

I Let a structure M is X -computable for every X 6∈ ∆0
n. Must

M be ∆0
n-computable?

I Let a structure M is X -computable for every X 6≤T A. Must

M be A-computable?

Theorem. (2008). There is a degree a ≤ 0′′ such that

Sp (M) 6= {x|x 6≤ a} for every M.

To �nd such an a ≤ 0(4) we prove that for every incomparable b
and c there exists an a ≤ (b ∪ c)(4) such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

To make a ≤ 0′′ we prove that for every c > 0 there exist

a, b ≤ c′′ such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

Kalimullin I.Sh. Reducibilities of algebraic structures



The relativized Lempp's question I

I Let a structure M is X -computable for every X 6∈ ∆0
n. Must

M be ∆0
n-computable?

I Let a structure M is X -computable for every X 6≤T A. Must

M be A-computable?

Theorem. (2008). There is a degree a ≤ 0′′ such that

Sp (M) 6= {x|x 6≤ a} for every M.

To �nd such an a ≤ 0(4) we prove that for every incomparable b
and c there exists an a ≤ (b ∪ c)(4) such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

To make a ≤ 0′′ we prove that for every c > 0 there exist

a, b ≤ c′′ such that for each M

{b, c} ⊆ Sp (M) =⇒ a ∈ Sp (M).

Kalimullin I.Sh. Reducibilities of algebraic structures



The relativized Lempp's question II

I Let a structure M is X -computable for every X 6∈ ∆0
n. Must

M be ∆0
n-computable?

I Let a structure M is X -computable for every X 6≤T A. Must

M be A-computable?

Theorem. (2007,2008). If a degree a is low or c.e. then there is a

structure M such that Sp (M) = {x|x 6≤ a}.

Theorem. Let C be a uniformly ∆0
2 family which is closed

downwards under ≤1 . Then there is a structure M such that

Sp (M) = {deg(X )|X ′ /∈ C}.
In particular, Sp (M) can consist from the non-superlow

degrees.
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The idea of the proofs

I Sp (M) = {x|x > 0}: (Wehner, 1999)

S = {{n} ⊕ U | U is �nite & U 6= Wn}.

I Sp (M) = {x | x 6≤ a}: a = deg(A) is low

S = {{n} ⊕ U|U is �nite & U 6= W A
n }.

I Sp (M) = {x | x′ /∈ C}: C = rng (ν), ν ∈ ∆0
2

S = {{n} ⊕ U|U is �nite & U 6= ν(n)}.

For the Uniformity vs. non-Uniformity result ν(n) = W Xn
n .

I Sp (M) = {x|x 6≤ a}: a = deg(A), A is c.e.

S = {{n}⊕U|U is the image of an increasing p.r.f & U 6= W A
n }.
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Properties of Dr and Dur

I If a = b ∩ c for low degrees a, b and c, then
{x|x 6≤ c} = {x|x 6≤ a} ∪ {x|x 6≤ b}. Hence, Dr possess

nontrivial infs.

I Each countable distributive lattice is embeddable into Dr
preserving sups and infs.

I If both two structures have degrees which are low and

incomparable to each other, then these two structures have

no in�mum in Dr and Dur . Hence, Dr and Dur are not

lattices.

I There are nonprincipal ideals in Dr and Dur which have

supremum.
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E-spectra and e-reducibilities

I For a structure M and an e-degree x we write M ≤e x, if
for some N ∼= M, |N| ⊆ ω we have D(N) ≤e x.

I The e-spectrum of algebraic structure M is the collection

e-Sp (M) of all e-degrees x such that M ≤e x.
I We say that a structure A is e-reducible to a structure B

(A ≤er B), if e-Sp (B) ⊆ e-Sp (A).

I We say that a structure A is uniformly e-reducible to a

structure B (A ≤uer B), if there is an e-operator Φ such

that for all N, |N| ⊆ ω,

N ∼= B =⇒ (∃M ∼= A)[|M| ⊆ ω & D(M) = Φ(D(N))].
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An e-spectrum of a structure

Theorem. (2009). There is a structure M such that

e-Sp (M) = {x ∈ De|x > 0}.
In fact M codes the family S = {{n} ⊕ U|U is c.e. & U 6= Wn}.

Corollary. Der contains the least nonzero element.
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Relationships between the reducibilities, I

(Stukachev, 2007).

A is Σ-de�nable in HF(B) without parameters

⇓
A ≤uer B =⇒ A ≤er B

⇓ ⇓
A ≤ur B =⇒ A ≤r B
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Relationships between the reducibilities, II

Theorem.

1. A ≤uer B does not imply that A is Σ-de�nable in HF(B);

2. A ≤ur B does not imply A ≤er B;

3. A ≤er B does not imply A ≤ur B;

4. A ≤er B and A ≤ur B do not imply A ≤uer B;

5. A ≤r B does not imply A ≤er M or A ≤ur B.

Everything above is correct up to �nite constant enrichments.
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Relationships between the reducibilities, III

Are the counterexamples from above are natural?

1. A ≤uer B does not imply that A is Σ-de�nable in HF(B);
A codes the family {{n} ⊕ U | U is c.e. & U 6= Wn}.
B codes the family of all in�nite c.e. sets.

2. A ≤ur B does not imply A ≤er B;

A codes the family of all graphs of computable functions.

B codes the family of all in�nite c.e. sets.

3. ?

4. ??

5. ???
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