\mathcal{M}^{2}-Computable Real Numbers

Dimiter Skordev ${ }^{1}$ Andreas Weiermann ${ }^{2}$

${ }^{1}$ University of Sofia, Bulgaria
${ }^{2}$ Ghent University, Belgium

Workshop on Computability Theory 2009, Sofia

The results on the subject of the talk are obtained by the authors and Ivan Georgiev during the period June 2008 - July 2009.

Outline

(1) Introduction

- The class \mathcal{M}^{2}
- \mathcal{F}-computability of real numbers
(2) Proving \mathcal{M}^{2}-computability by using appropriate partial sums
- \mathcal{M}^{2}-computability of the number e
- \mathcal{M}^{2}-computability of Liouville's number
- A partial generalization
(3) Stronger tools for proving \mathcal{M}^{2}-computability of real numbers
- \mathcal{M}^{2}-computable real-valued function with natural arguments
- Logarithmically bounded summation
- \mathcal{M}^{2}-computability of sums of series
(4) Applications of the stronger tools
- \mathcal{M}^{2}-computability of π
- A generalization
- Some other \mathcal{M}^{2}-computable constants
- Preservation of \mathcal{M}^{2}-computability by certain functions
(5) Conclusion
(6) References
－Definition．The class \mathcal{M}^{2} is the smallest class \mathcal{F} of total functions in \mathbb{N} such that \mathcal{F} contains the projection functions， the constant 0 ，the successor function，the multiplication function，as well as the function $\lambda x y . x \doteq y$ ，and \mathcal{F} is closed under substitution and bounded least number operator．
－Remark．There are different variants of the definition of $(\mu i \leq y)\left[f\left(x_{1}, \ldots, x_{k}, i\right)=0\right]$ for the case when there is no as the corresponding value．It does not matter which of them is accepted．The function $\lambda x y \cdot x \dot{-} y$ may be replaced with $\lambda x y .|x-y|$
－All functions from \mathcal{M}^{2} are lower elementary in Skolem＇s sense but it is not known whether the converse is true（it would be true if and only if \mathcal{M}^{2} was closed under bounded summation）
- Definition. The class \mathcal{M}^{2} is the smallest class \mathcal{F} of total functions in \mathbb{N} such that \mathcal{F} contains the projection functions, the constant 0 , the successor function, the multiplication function, as well as the function $\lambda x y \cdot x \doteq y$, and \mathcal{F} is closed under substitution and bounded least number operator.
- Remark. There are different variants of the definition of $(\mu i \leq y)\left[f\left(x_{1}, \ldots, x_{k}, i\right)=0\right]$ for the case when there is no $i \leq y$ with $f\left(x_{1}, \ldots, x_{k}, i\right)=0$, namely by using $0, y$ or $y+1$ as the corresponding value. It does not matter which of them is accepted. The function $\lambda x y \cdot x \dot{-} y$ may be replaced with $\lambda x y .|x-y|$.
but it is not known whether the converse is true (it would be true if and only if \mathcal{M}^{2} was closed under bounded summation)
- Definition. The class \mathcal{M}^{2} is the smallest class \mathcal{F} of total functions in \mathbb{N} such that \mathcal{F} contains the projection functions, the constant 0 , the successor function, the multiplication function, as well as the function $\lambda x y . x-y$, and \mathcal{F} is closed under substitution and bounded least number operator.
- Remark. There are different variants of the definition of $(\mu i \leq y)\left[f\left(x_{1}, \ldots, x_{k}, i\right)=0\right]$ for the case when there is no $i \leq y$ with $f\left(x_{1}, \ldots, x_{k}, i\right)=0$, namely by using $0, y$ or $y+1$ as the corresponding value. It does not matter which of them is accepted. The function $\lambda x y \cdot x \dot{-} y$ may be replaced with $\lambda x y .|x-y|$.
- All functions from \mathcal{M}^{2} are lower elementary in Skolem's sense, but it is not known whether the converse is true (it would be true if and only if \mathcal{M}^{2} was closed under bounded summation).
- The class \mathcal{M}^{2} consists exactly of the total functions in \mathbb{N} which are polynomially bounded and have Δ_{0} definable graphs. Hence a relation in \mathbb{N} is Δ_{0} definable if and only if its characteristic function belongs to \mathcal{M}^{2}.
- Theorem (Paris-Wilkie-Woods, Berarducci-D'Aquino). If the graph of a function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is Δ_{0} definable, then so are the graphs of the functions
- The class \mathcal{M}^{2} consists exactly of the total functions in \mathbb{N} which are polynomially bounded and have Δ_{0} definable graphs. Hence a relation in \mathbb{N} is Δ_{0} definable if and only if its characteristic function belongs to \mathcal{M}^{2}.
- Theorem (Paris-Wilkie-Woods, Berarducci-D'Aquino). If the graph of a function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is Δ_{0} definable, then so are the graphs of the functions

$$
\begin{gathered}
g\left(x_{1}, \ldots, x_{k}, y\right)=\sum_{i \leq \log _{2}(y+1)} f\left(x_{1}, \ldots, x_{k}, i\right), \\
h\left(x_{1}, \ldots, x_{k}, y\right)=\prod_{i \leq y} f\left(x_{1}, \ldots, x_{k}, i\right) .
\end{gathered}
$$

- The class \mathcal{M}^{2} consists exactly of the total functions in \mathbb{N} which are polynomially bounded and have Δ_{0} definable graphs. Hence a relation in \mathbb{N} is Δ_{0} definable if and only if its characteristic function belongs to \mathcal{M}^{2}.
- Theorem (Paris-Wilkie-Woods, Berarducci-D'Aquino). If the graph of a function $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is Δ_{0} definable, then so are the graphs of the functions

$$
\begin{gathered}
g\left(x_{1}, \ldots, x_{k}, y\right)=\sum_{i \leq \log _{2}(y+1)} f\left(x_{1}, \ldots, x_{k}, i\right) \\
h\left(x_{1}, \ldots, x_{k}, y\right)=\prod_{i \leq y} f\left(x_{1}, \ldots, x_{k}, i\right)
\end{gathered}
$$

- Corollary. If $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is in \mathcal{M}^{2}, and g, h are as above, then $g \in \mathcal{M}^{2}$ and $\lambda x_{1} \ldots x_{k} y z . \min \left(h\left(x_{1}, \ldots, x_{k}, y\right), z\right) \in \mathcal{M}^{2}$.

Computability of real numbers

- Definition. A sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers is called recursive if there exist recursive functions f, g and h such that

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

- Definition. A real number α is called computable if there exists a recursive sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers such that $\left|r_{n}-\alpha\right| \leq 2^{-n}, \quad n=0,1,2$,
- Remark. A definition with $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ instead of $\left|r_{n}-\alpha\right| \leq 2^{-n}$ would be equivalent to the above one, since $2^{-n} \leq(n+1)^{-1}$, and for any recursive sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers the sequence $r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots$, defined by $r_{n}^{\prime}=r_{2^{n}-1}$, is also recursive.

Computability of real numbers

－Definition．A sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers is called recursive if there exist recursive functions f, g and h such that

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

－Definition．A real number α is called computable if there exists a recursive sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers such that $\left|r_{n}-\alpha\right| \leq 2^{-n}, \quad n=0,1,2, \ldots$
－Remark．A definition with $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ instead of $\left|r_{n}-\alpha\right| \leq 2^{-n}$ would be equivalent to the above one，since $2^{-n} \leq(n+1)^{-1}$ ，and for any recursive sequence r_{0}, r_{1}, r_{2}, ． rational numbers the sequence $r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots$ ，defined by $r_{n}^{\prime}=r_{2^{n}-1}$ ，is also recursive．

Computability of real numbers

- Definition. A sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers is called recursive if there exist recursive functions f, g and h such that

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

- Definition. A real number α is called computable if there exists a recursive sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers such that $\left|r_{n}-\alpha\right| \leq 2^{-n}, \quad n=0,1,2, \ldots$
- Remark. A definition with $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ instead of $\left|r_{n}-\alpha\right| \leq 2^{-n}$ would be equivalent to the above one, since $2^{-n} \leq(n+1)^{-1}$, and for any recursive sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers the sequence $r_{0}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots$, defined by $r_{n}^{\prime}=r_{2^{n}-1}$, is also recursive.
- Definition. Let \mathcal{F} be a class of total functions in the set of the natural numbers (for instance the class \mathcal{M}^{2}).
- A sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers is called an \mathcal{F}-sequence if there exist functions $f, g, h \in \mathcal{F}$ such that

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

- Remark. In the case of $\mathcal{F}=\mathcal{M}^{2}$, a definition with $\left|r_{n}-\alpha\right| \leq 2^{-n}$ instead of $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ would be not equivalent to the above one!
- Definition. Let \mathcal{F} be a class of total functions in the set of the natural numbers (for instance the class \mathcal{M}^{2}).
- A sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers is called an \mathcal{F}-sequence if there exist functions $f, g, h \in \mathcal{F}$ such that

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

- A real number α is called \mathcal{F}-computable if there exists an \mathcal{F}-sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers such that $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}, \quad n=0,1,2, \ldots$ The set of the \mathcal{F}-computable real numbers will be denoted by $\mathbb{R}_{\mathcal{F}}$.
- Remark. In the case of $\mathcal{F}=\mathcal{M}^{2}$, a definition with equivalent to the above one!
- Definition. Let \mathcal{F} be a class of total functions in the set of the natural numbers (for instance the class \mathcal{M}^{2}).
- A sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers is called an \mathcal{F}-sequence if there exist functions $f, g, h \in \mathcal{F}$ such that

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

- A real number α is called \mathcal{F}-computable if there exists an \mathcal{F}-sequence $r_{0}, r_{1}, r_{2}, \ldots$ of rational numbers such that $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}, \quad n=0,1,2, \ldots$ The set of the \mathcal{F}-computable real numbers will be denoted by $\mathbb{R}_{\mathcal{F}}$.
- Remark. In the case of $\mathcal{F}=\mathcal{M}^{2}$, a definition with $\left|r_{n}-\alpha\right| \leq 2^{-n}$ instead of $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ would be not equivalent to the above one!

Suppose $\left|r_{n}-\alpha\right| \leq 2^{-n}, \quad n=0,1,2, \ldots$, where

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

$f, g, h: \mathbb{N} \rightarrow \mathbb{N}$. Whenever $r_{n} \neq r_{n+1}$, then

$$
3 \cdot 2^{-n-1} \geq\left|r_{n}-r_{n+1}\right| \geq \frac{1}{(h(n)+1)(h(n+1)+1)}
$$

and therefore $3(h(n)+1)(h(n+1)+1) \geq 2^{n+1}$.
large n, hence we will have $r_{n}=r_{n+1}$ for all such n, and α must be
a rational number. On the other hand, there are irrational numbers (e.g. $\sqrt{2}$) that are \mathcal{M}^{2}-computable in the sense of the definition with $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ (we have $\left|r_{n}-\sqrt{2}\right|<(n+1)^{-1}$ with $r_{n}=k_{n} /(n+1)$, where $\left.k_{n}=\min \left\{k \in \mathbb{N} \mid k^{2}>2(n+1)^{2}\right\}\right)$

Suppose $\left|r_{n}-\alpha\right| \leq 2^{-n}, \quad n=0,1,2, \ldots$, where

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

$f, g, h: \mathbb{N} \rightarrow \mathbb{N}$. Whenever $r_{n} \neq r_{n+1}$, then

$$
3 \cdot 2^{-n-1} \geq\left|r_{n}-r_{n+1}\right| \geq \frac{1}{(h(n)+1)(h(n+1)+1)}
$$

and therefore $3(h(n)+1)(h(n+1)+1) \geq 2^{n+1}$. With a function $h \in \mathcal{M}^{2}$, the above inequality will be violated for all sufficiently large n, hence we will have $r_{n}=r_{n+1}$ for all such n, and α must be a rational number.

Suppose $\left|r_{n}-\alpha\right| \leq 2^{-n}, \quad n=0,1,2, \ldots$, where

$$
r_{n}=\frac{f(n)-g(n)}{h(n)+1}, \quad n=0,1,2, \ldots
$$

$f, g, h: \mathbb{N} \rightarrow \mathbb{N}$. Whenever $r_{n} \neq r_{n+1}$, then

$$
3 \cdot 2^{-n-1} \geq\left|r_{n}-r_{n+1}\right| \geq \frac{1}{(h(n)+1)(h(n+1)+1)}
$$

and therefore $3(h(n)+1)(h(n+1)+1) \geq 2^{n+1}$. With a function $h \in \mathcal{M}^{2}$, the above inequality will be violated for all sufficiently large n, hence we will have $r_{n}=r_{n+1}$ for all such n, and α must be a rational number. On the other hand, there are irrational numbers (e.g. $\sqrt{2}$) that are \mathcal{M}^{2}-computable in the sense of the definition with $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ (we have $\left|r_{n}-\sqrt{2}\right|<(n+1)^{-1}$ with $r_{n}=k_{n} /(n+1)$, where $\left.k_{n}=\min \left\{k \in \mathbb{N} \mid k^{2}>2(n+1)^{2}\right\}\right)$
－Theorem．Let \mathcal{F} be a class of total functions in \mathbb{N} ．Then：
－If \mathcal{F} contains the successor，projection，multiplication functions，as well as the function $\lambda x y \cdot|x-y|$ ，and \mathcal{F} is closed under substitution，then $\mathbb{R}_{\mathcal{F}}$ is a field．
closed under the bounded least number operator，then $\mathbb{R}_{\mathcal{F}}$ is a real closed field．
－Corollary． $\mathbb{R}_{\mathcal{M}_{2}}$ is a real closed field．

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N}. Then:
- If \mathcal{F} contains the successor, projection, multiplication functions, as well as the function $\lambda x y .|x-y|$, and \mathcal{F} is closed under substitution, then $\mathbb{R}_{\mathcal{F}}$ is a field.
- If \mathcal{F} satisfies the above assumptions, and, in addition, \mathcal{F} is closed under the bounded least number operator, then $\mathbb{R}_{\mathcal{F}}$ is a real closed field.
- Corollary. $\mathbb{R}_{\mathcal{M}^{2}}$ is a real closed field.
- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N}. Then:
- If \mathcal{F} contains the successor, projection, multiplication functions, as well as the function $\lambda x y .|x-y|$, and \mathcal{F} is closed under substitution, then $\mathbb{R}_{\mathcal{F}}$ is a field.
- If \mathcal{F} satisfies the above assumptions, and, in addition, \mathcal{F} is closed under the bounded least number operator, then $\mathbb{R}_{\mathcal{F}}$ is a real closed field.
- Corollary. $\mathbb{R}_{\mathcal{M}^{2}}$ is a real closed field.

\mathcal{M}^{2}-computability of significant concrete real numbers

It seems that many significant concrete real numbers are \mathcal{M}^{2}-computable. We show, for instance, that the numbers e and π, as well as Liouville's transcendental number are \mathcal{M}^{2}-computable (unfortunately, we do not know what is the situation with the Euler-Mascheroni constant).
using \mathcal{M}^{2}-sequences consisting of appropriate partial sums of
infinite series representing these numbers. ${ }^{1}$ In the case of π, however, we do not use an \mathcal{M}^{2}-sequence of partial sums, but one consisting of appropriate approximations of them

[^0] 2008

\mathcal{M}^{2}-computability of significant concrete real numbers

It seems that many significant concrete real numbers are \mathcal{M}^{2}-computable. We show, for instance, that the numbers e and π, as well as Liouville's transcendental number are \mathcal{M}^{2}-computable (unfortunately, we do not know what is the situation with the Euler-Mascheroni constant). The \mathcal{M}^{2}-computability of e and of Liouville's number can be shown by using \mathcal{M}^{2}-sequences consisting of appropriate partial sums of infinite series representing these numbers.
however, we do not use an \mathcal{M}^{2}-sequence of partial sums, but one
consisting of appropriate approximations of them

[^1] 2008

\mathcal{M}^{2}-computability of significant concrete real numbers

It seems that many significant concrete real numbers are \mathcal{M}^{2}-computable. We show, for instance, that the numbers e and π, as well as Liouville's transcendental number are \mathcal{M}^{2}-computable (unfortunately, we do not know what is the situation with the Euler-Mascheroni constant). The \mathcal{M}^{2}-computability of e and of Liouville's number can be shown by using \mathcal{M}^{2}-sequences consisting of appropriate partial sums of infinite series representing these numbers. ${ }^{1}$
nowever, we do not use an M^{2}-sequence of partial sums, but one
consisting of appropriate approximations of them

[^2]
\mathcal{M}^{2}-computability of significant concrete real numbers

It seems that many significant concrete real numbers are \mathcal{M}^{2}-computable. We show, for instance, that the numbers e and π, as well as Liouville's transcendental number are \mathcal{M}^{2}-computable (unfortunately, we do not know what is the situation with the Euler-Mascheroni constant). The \mathcal{M}^{2}-computability of e and of Liouville's number can be shown by using \mathcal{M}^{2}-sequences consisting of appropriate partial sums of infinite series representing these numbers. ${ }^{1}$ In the case of π, however, we do not use an \mathcal{M}^{2}-sequence of partial sums, but one consisting of appropriate approximations of them.

[^3]
\mathcal{M}^{2}-computability of the number e

For any $k \in \mathbb{N}$, let $s_{k}=1+1 / 1!+1 / 2!+\cdots+1 / k$!. Then we have $\left|s_{k}-e\right|<\frac{1}{k!k}$ for $k=1,2,3, \ldots$ Let $k_{n}=\min \{k \mid k!k \geq n+1\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-e\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$.
that the sequence $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=k_{n}!s_{k_{n}} / k_{n}!$ and proving that the functions $\lambda n . k_{n}!s_{k_{n}}$ and $\lambda n . k_{n}$! belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since the equality $m=k_{n}$! is equivalent to

$$
(\exists k \leq m)(m=k!\& m k \geq n+1 \& m(k-1) \leq n k),
$$

this condition implies $m \leq 2 n+1$, and the graph of the factorial function is Δ_{0} definable. The statement that $\lambda n \cdot k_{n}!s_{k_{n}} \in \mathcal{M}^{2}$ follows from the fact that $2^{k_{n}} \leq 2 k_{n}!\leq 4 n+2$, hence $k_{n} \leq \log _{2}(4 n+2)$ and therefore

\mathcal{M}^{2}-computability of the number e

For any $k \in \mathbb{N}$, let $s_{k}=1+1 / 1!+1 / 2!+\cdots+1 / k!$. Then we have $\left|s_{k}-e\right|<\frac{1}{k!k}$ for $k=1,2,3, \ldots$ Let $k_{n}=\min \{k \mid k!k \geq n+1\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-e\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=k_{n}!s_{k_{n}} / k_{n}$! and proving that the functions $\lambda n . k_{n}!s_{k_{n}}$ and $\lambda n . k_{n}$! belong to \mathcal{M}^{2}.
this condition implies $m \leq 2 n+1$, and the graph of the factorial function is Δ_{0} definable. The statement that $\lambda n . k_{n}!s_{k_{n}} \in \mathcal{M}^{2}$ follows from the fact that $2^{k_{n}} \leq 2 k_{n}!\leq 4 n+2$, hence $k_{n} \leq \log _{2}(4 n+2)$ and therefore

\mathcal{M}^{2}-computability of the number e

For any $k \in \mathbb{N}$, let $s_{k}=1+1 / 1!+1 / 2!+\cdots+1 / k!$. Then we have $\left|s_{k}-e\right|<\frac{1}{k!k}$ for $k=1,2,3, \ldots$ Let $k_{n}=\min \{k \mid k!k \geq n+1\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-e\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=k_{n}!s_{k_{n}} / k_{n}$! and proving that the functions $\lambda n . k_{n}!s_{k_{n}}$ and $\lambda n . k_{n}$! belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since the equality $m=k_{n}$! is equivalent to

$$
(\exists k \leq m)(m=k!\& m k \geq n+1 \& m(k-1) \leq n k),
$$

this condition implies $m \leq 2 n+1$, and the graph of the factorial function is Δ_{0} definable.
$k_{n} \leq \log _{2}(4 n+2)$ and therefore

\mathcal{M}^{2}-computability of the number e

For any $k \in \mathbb{N}$, let $s_{k}=1+1 / 1!+1 / 2!+\cdots+1 / k!$. Then we have $\left|s_{k}-e\right|<\frac{1}{k!k}$ for $k=1,2,3, \ldots$ Let $k_{n}=\min \{k \mid k!k \geq n+1\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-e\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=k_{n}!s_{k_{n}} / k_{n}$! and proving that the functions $\lambda n . k_{n}!s_{k_{n}}$ and $\lambda n . k_{n}$! belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since the equality $m=k_{n}$! is equivalent to

$$
(\exists k \leq m)(m=k!\& m k \geq n+1 \& m(k-1) \leq n k),
$$

this condition implies $m \leq 2 n+1$, and the graph of the factorial function is Δ_{0} definable. The statement that $\lambda n . k_{n}!s_{k_{n}} \in \mathcal{M}^{2}$ follows from the fact that $2^{k_{n}} \leq 2 k_{n}!\leq 4 n+2$, hence $k_{n} \leq \log _{2}(4 n+2)$ and therefore

$$
k_{n}!s_{k_{n}}=\sum_{i \leq \log _{2}(4 n+2)}\left\lfloor k_{n}!/ \min \left(i!, k_{n}!+1\right)\right\rfloor .
$$

\mathcal{M}^{2}-computability of Liouville's number

Liouville's number L is the infinite sum $10^{-1!}+10^{-2!}+10^{-3!}+\cdots$ Let $s_{k}=10^{-1!}+10^{-2!}+\ldots+10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $\left|s_{k}-L\right|<\frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \left\{k \mid 10^{k!k} \geq n+1\right\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-L\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$.
will be shown to be an \mathcal{M}^{2}-sequence by proving that
the functions $\lambda n .10^{k_{n}!} s_{k_{n}}$ and λn. $10^{k_{n}!}$ belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since $m=10^{k_{n}!}$ is equivalent to
this condition implies $m \leq n^{2}+9$, and the graphs of the factorial function and of the function $\lambda x .10^{x}$ are Δ_{0} definable. To prove that $\lambda n \cdot 10^{k_{n}!} s_{k_{n}} \in \mathcal{M}^{2}$, we show that $k_{n} \leq \log _{2}(n+2)$ and hence

\mathcal{M}^{2}-computability of Liouville's number

Liouville's number L is the infinite sum $10^{-1!}+10^{-2!}+10^{-3!}+\cdots$ Let $s_{k}=10^{-1!}+10^{-2!}+\ldots+10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $\left|s_{k}-L\right|<\frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \left\{k \mid 10^{k!k} \geq n+1\right\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-L\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence $r_{0}, r_{1}, r_{2}, \ldots$ will be shown to be an \mathcal{M}^{2}-sequence by proving that the functions $\lambda n \cdot 10^{k_{n}!} s_{k_{n}}$ and $\lambda n .10^{k_{n}!}$ belong to \mathcal{M}^{2}.
of them belongs to \mathcal{M}^{2}, since $m=10^{k_{n}!}$ is equivalent to
this condition implies $m \leq n^{2}+9$, and the graphs of the factorial function and of the function $\lambda x \cdot 10^{x}$ are Δ_{0} definable. To prove that $\lambda n .10^{k_{n}!} s_{k_{n}} \in \mathcal{M}^{2}$, we show that $k_{n} \leq \log _{2}(n+2)$ and hence

\mathcal{M}^{2}-computability of Liouville's number

Liouville's number L is the infinite sum $10^{-1!}+10^{-2!}+10^{-3!}+\cdots$ Let $s_{k}=10^{-1!}+10^{-2!}+\ldots+10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $\left|s_{k}-L\right|<\frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \left\{k \mid 10^{k!k} \geq n+1\right\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-L\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence $r_{0}, r_{1}, r_{2}, \ldots$ will be shown to be an \mathcal{M}^{2}-sequence by proving that the functions $\lambda n .10^{k_{n}!} s_{k_{n}}$ and $\lambda n .10^{k_{n}!}$ belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since $m=10^{k_{n}!}$ is equivalent to

$$
\begin{aligned}
(n=0 \& m=1) \vee & (\exists i, j \leq n)\left(j=i!\& m=10^{j(i+1)} \&\right. \\
& \left.(\exists I \leq n)\left(I=10^{j i}\right) \&(\forall I \leq n)\left(I \neq 10^{j(i+1)^{2}}\right)\right),
\end{aligned}
$$

this condition implies $m \leq n^{2}+9$, and the graphs of the factorial function and of the function $\lambda x \cdot 10^{x}$ are Δ_{0} definable.

\mathcal{M}^{2}-computability of Liouville's number

Liouville's number L is the infinite sum $10^{-1!}+10^{-2!}+10^{-3!}+\cdots$ Let $s_{k}=10^{-1!}+10^{-2!}+\ldots+10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $\left|s_{k}-L\right|<\frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \left\{k \mid 10^{k!k} \geq n+1\right\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-L\right|<(n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence $r_{0}, r_{1}, r_{2}, \ldots$ will be shown to be an \mathcal{M}^{2}-sequence by proving that the functions $\lambda n .10^{k_{n}!} s_{k_{n}}$ and $\lambda n .10^{k_{n}!}$ belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since $m=10^{k_{n}!}$ is equivalent to

$$
\begin{aligned}
(n=0 \& m=1) \vee & (\exists i, j \leq n)\left(j=i!\& m=10^{j(i+1)} \&\right. \\
& \left.(\exists I \leq n)\left(I=10^{j i}\right) \&(\forall I \leq n)\left(I \neq 10^{j(i+1)^{2}}\right)\right),
\end{aligned}
$$

this condition implies $m \leq n^{2}+9$, and the graphs of the factorial function and of the function $\lambda x .10^{x}$ are Δ_{0} definable. To prove that $\lambda n .10^{k_{n}!} s_{k_{n}} \in \mathcal{M}^{2}$, we show that $k_{n} \leq \log _{2}(n+2)$ and hence

$$
10^{k_{n}!} s_{k_{n}}=\min (n, 1) \sum_{1 \leq i \leq \log _{2}(n+2)}\left\lfloor 10^{k_{n}!} / \min \left(10^{i!}, 10^{k_{n}!}+1\right)\right\rfloor
$$

A partial generalization

- Theorem. Let $\alpha=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots$, where $\varphi: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_{0} definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^{2}}$.

any $k \in \mathbb{N}$. Then $\left|s_{k}-\alpha\right| \leq 2 / \varphi(k+1)$ for all $k \in \mathbb{N}$. Let

 $k_{n}=\min \{k \mid \varphi(k+1) \geq 2 n+2\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=\varphi\left(k_{n}\right) s_{k_{n}} / \varphi\left(k_{n}\right)$ and proving that the functions $\lambda n \cdot \varphi\left(k_{n}\right) s_{k_{n}}$ and $\lambda n \cdot \varphi\left(k_{n}\right)$ belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since $m=\varphi\left(k_{n}\right)$ is equivalent to $(\exists k \leq m)(m=\varphi(k) \&(k=0 \vee m \leq 2 n+1) \&(\forall I \leq$$2 n+1)(I \neq \varphi(k+1)))$, and this condition implies
$m \leq 2 n+\varphi(0)$. To prove that $\lambda n \cdot \varphi\left(k_{n}\right) s_{k_{n}} \in \mathcal{M}^{2}$, we note that $k_{n} \leq \log _{2}(2 n+\varphi(0))$ and hence

A partial generalization

- Theorem. Let $\alpha=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots$, where $\varphi: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_{0} definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let $s_{k}=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots+1 / \varphi(k)$ for any $k \in \mathbb{N}$. Then $\left|s_{k}-\alpha\right| \leq 2 / \varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \{k \mid \varphi(k+1) \geq 2 n+2\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$.
$r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using
the equality $r_{n}=\varphi\left(k_{n}\right) s_{k_{n}} / \varphi\left(k_{n}\right)$ and proving that the
functions $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}}$ and $\lambda n . \varphi\left(k_{n}\right)$ belong to \mathcal{M}^{2}. The
second of them belongs to \mathcal{M}^{2}, since $m=\varphi\left(k_{n}\right)$ is equivalent
to $(\exists k \leq m)(m=\varphi(k) \&(k=0 \vee m \leq 2 n+1) \&(\forall I \leq$
$2 n+1)(I \neq \varphi(k+1)))$, and this condition implies
$m \leq 2 n+\varphi(0)$. To prove that $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}} \in \mathcal{M}^{2}$, we note that
$k_{n} \leq \log _{2}(2 n+\varphi(0))$ and hence

A partial generalization

- Theorem. Let $\alpha=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots$, where $\varphi: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_{0} definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let $s_{k}=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots+1 / \varphi(k)$ for any $k \in \mathbb{N}$. Then $\left|s_{k}-\alpha\right| \leq 2 / \varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \{k \mid \varphi(k+1) \geq 2 n+2\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=\varphi\left(k_{n}\right) s_{k_{n}} / \varphi\left(k_{n}\right)$ and proving that the functions $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}}$ and $\lambda n . \varphi\left(k_{n}\right)$ belong to \mathcal{M}^{2}.
second of them belongs to \mathcal{M}^{2}, since $m=\varphi\left(k_{n}\right)$ is equivalent
to $(\exists k \leq m)(m=\varphi(k) \&(k=0 \vee m \leq 2 n+1) \&(\forall I \leq$
$2 n+1)(I+q(k+1)))$, and this condition implies
$m \leq 2 n+\varphi(0)$. To prove that $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}} \in \mathcal{M}^{2}$, we note that
$k_{n} \leq \log _{2}(2 n+\varphi(0))$ and hence

A partial generalization

- Theorem. Let $\alpha=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots$, where $\varphi: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_{0} definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let $s_{k}=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots+1 / \varphi(k)$ for any $k \in \mathbb{N}$. Then $\left|s_{k}-\alpha\right| \leq 2 / \varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \{k \mid \varphi(k+1) \geq 2 n+2\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=\varphi\left(k_{n}\right) s_{k_{n}} / \varphi\left(k_{n}\right)$ and proving that the functions $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}}$ and $\lambda n . \varphi\left(k_{n}\right)$ belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since $m=\varphi\left(k_{n}\right)$ is equivalent to $(\exists k \leq m)(m=\varphi(k) \&(k=0 \vee m \leq 2 n+1) \&(\forall I \leq$ $2 n+1)(I \neq \varphi(k+1)))$, and this condition implies $m \leq 2 n+\varphi(0)$.

A partial generalization

- Theorem. Let $\alpha=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots$, where $\varphi: \mathbb{N} \rightarrow \mathbb{N} \backslash\{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_{0} definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let $s_{k}=1 / \varphi(0)+1 / \varphi(1)+1 / \varphi(2)+\cdots+1 / \varphi(k)$ for any $k \in \mathbb{N}$. Then $\left|s_{k}-\alpha\right| \leq 2 / \varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_{n}=\min \{k \mid \varphi(k+1) \geq 2 n+2\}, r_{n}=s_{k_{n}}$ for any $n \in \mathbb{N}$. Then $\left|r_{n}-\alpha\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that $r_{0}, r_{1}, r_{2}, \ldots$ is an \mathcal{M}^{2}-sequence. This will be done by using the equality $r_{n}=\varphi\left(k_{n}\right) s_{k_{n}} / \varphi\left(k_{n}\right)$ and proving that the functions $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}}$ and $\lambda n . \varphi\left(k_{n}\right)$ belong to \mathcal{M}^{2}. The second of them belongs to \mathcal{M}^{2}, since $m=\varphi\left(k_{n}\right)$ is equivalent to $(\exists k \leq m)(m=\varphi(k) \&(k=0 \vee m \leq 2 n+1) \&(\forall I \leq$ $2 n+1)(I \neq \varphi(k+1)))$, and this condition implies $m \leq 2 n+\varphi(0)$. To prove that $\lambda n . \varphi\left(k_{n}\right) s_{k_{n}} \in \mathcal{M}^{2}$, we note that $k_{n} \leq \log _{2}(2 n+\varphi(0))$ and hence

$$
\varphi\left(k_{n}\right) s_{k_{n}}=\sum_{i \leq \log _{2}(2 n+\varphi(0))}\left\lfloor\varphi\left(k_{n}\right) / \min \left(\varphi(i), \varphi\left(k_{n}\right)+1\right)\right\rfloor .
$$

\mathcal{M}^{2}-computable real-valued function with natural arguments

- Definition. A function $\theta: \mathbb{N}^{\prime} \rightarrow \mathbb{R}$ is called \mathcal{M}^{2}-computable if there exist $I+1$-argument functions $f, g, h \in \mathcal{M}^{2}$ such that

$$
\left|\frac{f\left(x_{1}, \ldots, x_{l}, n\right)-g\left(x_{1}, \ldots, x_{l}, n\right)}{h\left(x_{1}, \ldots, x_{l}, n\right)+1}-\theta\left(x_{1}, \ldots, x_{l}\right)\right| \leq \frac{1}{n+1}
$$

for all x_{1}, \ldots, x_{l}, n in \mathbb{N}.

- All values of an \mathcal{M}^{2}-computable real-valued function with natural arguments belong to $\mathbb{R}_{\mathcal{M}^{2}}$ (the 0 -argument \mathcal{M}^{2}-computable real-valued functions can be identified with elements of $\mathbb{R}_{\mathcal{M}^{2}}$). Any substitution of functions from the class \mathcal{M}^{2} into an \mathcal{M}^{2}-computable real-valued function with natural arguments produces again a function of this kind.
- Definition. A function $\theta: \mathbb{N}^{\prime} \rightarrow \mathbb{R}$ is called \mathcal{M}^{2}-computable if there exist $I+1$-argument functions $f, g, h \in \mathcal{M}^{2}$ such that

$$
\left|\frac{f\left(x_{1}, \ldots, x_{l}, n\right)-g\left(x_{1}, \ldots, x_{l}, n\right)}{h\left(x_{1}, \ldots, x_{l}, n\right)+1}-\theta\left(x_{1}, \ldots, x_{l}\right)\right| \leq \frac{1}{n+1}
$$

for all x_{1}, \ldots, x_{l}, n in \mathbb{N}.

- All values of an \mathcal{M}^{2}-computable real-valued function with natural arguments belong to $\mathbb{R}_{\mathcal{M}^{2}}$ (the 0 -argument \mathcal{M}^{2}-computable real-valued functions can be identified with elements of $\mathbb{R}_{\mathcal{M}^{2}}$). Any substitution of functions from the class \mathcal{M}^{2} into an \mathcal{M}^{2}-computable real-valued function with natural arguments produces again a function of this kind.

Grzegorczyk-type approximation

- Lemma. Let $\theta: \mathbb{N}^{\prime} \rightarrow \mathbb{R}$ be an \mathcal{M}^{2}-computable function.

Then there exist $I+1$-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$
\left|\frac{F\left(x_{1}, \ldots, x_{l}, n\right)-G\left(x_{1}, \ldots, x_{l}, n\right)}{n+1}-\theta\left(x_{1}, \ldots, x_{l}\right)\right| \leq \frac{1}{n+1}
$$

for all x_{1}, \ldots, x_{l}, n in \mathbb{N}.
Proof. There exists a two-argument function A in \mathcal{M}^{2} such that $\left|A(i, j)-\frac{i}{j+1}\right| \leq \frac{1}{2}$ for all $i, j \in \mathbb{N}$. Let f, g, h be such as in the definition in the previous frame. We set

and we use the fact that

Grzegorczyk-type approximation

- Lemma. Let $\theta: \mathbb{N}^{\prime} \rightarrow \mathbb{R}$ be an \mathcal{M}^{2}-computable function.

Then there exist $I+1$-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$
\left|\frac{F\left(x_{1}, \ldots, x_{l}, n\right)-G\left(x_{1}, \ldots, x_{l}, n\right)}{n+1}-\theta\left(x_{1}, \ldots, x_{l}\right)\right| \leq \frac{1}{n+1}
$$

for all x_{1}, \ldots, x_{l}, n in \mathbb{N}.

- Proof. There exists a two-argument function A in \mathcal{M}^{2} such that $\left|A(i, j)-\frac{i}{j+1}\right| \leq \frac{1}{2}$ for all $i, j \in \mathbb{N}$. Let f, g, h be such as in the definition in the previous frame.

and we use the fact that

Grzegorczyk-type approximation

- Lemma. Let $\theta: \mathbb{N}^{\prime} \rightarrow \mathbb{R}$ be an \mathcal{M}^{2}-computable function.

Then there exist $I+1$-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$
\left|\frac{F\left(x_{1}, \ldots, x_{l}, n\right)-G\left(x_{1}, \ldots, x_{l}, n\right)}{n+1}-\theta\left(x_{1}, \ldots, x_{l}\right)\right| \leq \frac{1}{n+1}
$$

for all x_{1}, \ldots, x_{l}, n in \mathbb{N}.

- Proof. There exists a two-argument function A in \mathcal{M}^{2} such that $\left|A(i, j)-\frac{i}{j+1}\right| \leq \frac{1}{2}$ for all $i, j \in \mathbb{N}$. Let f, g, h be such as in the definition in the previous frame. We set

$$
\begin{aligned}
& F(\bar{x}, n)=A((n+1)(f(\bar{x}, 2 n+1)-g(\bar{x}, 2 n+1)), h(\bar{x}, 2 n+1)), \\
& G(\bar{x}, n)=A((n+1)(g(\bar{x}, 2 n+1)-f(\bar{x}, 2 n+1)), h(\bar{x}, 2 n+1)),
\end{aligned}
$$

and we use the fact that

$$
\left|\frac{F(\bar{x}, n)-G(\bar{x}, n)}{n+1}-\frac{f(\bar{x}, 2 n+1)-g(\bar{x}, 2 n+1)}{h(\bar{x}, 2 n+1)+1}\right| \leq \frac{1}{2 n+2} .
$$

Arithmetical operations on \mathcal{M}^{2}-computable real-valued functions of natural arguments

- Lemma. Let $\theta_{i}: \mathbb{N}^{\prime} \rightarrow \mathbb{R}, i=1,2$, be \mathcal{M}^{2}-computable functions. Then so are also $\theta_{1}+\theta_{2}, \theta_{1}-\theta_{2}$ and $\theta_{1} \theta_{2}$.

for all \bar{x} in \mathbb{N}^{\prime} and all n in \mathbb{N}. To prove the statement about $\theta_{1} \theta_{2}$ (the other cases are easier), we define $k, f, g: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$ by $k(\bar{x}, n)=\left(\left|F_{1}(\bar{x}, 0)-G_{1}(\bar{x}, 0)\right|+\left|F_{2}(\bar{x}, 0)-G_{2}(\bar{x}, 0)\right|+3\right)(n+1)-1$ $f(\bar{x}, n)=F_{1}(\bar{x}, k(\bar{x}, n)) F_{2}(\bar{x}, k(\bar{x}, n))+G_{1}(\bar{x}, k(\bar{x}, n)) G_{2}(\bar{x}, k(\bar{x}, n))$ $g(\bar{x}, n)=F_{1}(\bar{x} k(\bar{x}, n)) G_{2}(\bar{x} k(\bar{x}, n))+G_{1}(\bar{x} k(\bar{x}, n)) F_{2}(\bar{x} k(\bar{x}, n))$ Then $k, f, g \in \mathcal{M}^{2}$, and, for all \bar{x} in \mathbb{N}^{\prime} and all n in \mathbb{N}, we have

Arithmetical operations on \mathcal{M}^{2}-computable real-valued functions of natural arguments

- Lemma. Let $\theta_{i}: \mathbb{N}^{\prime} \rightarrow \mathbb{R}, i=1,2$, be \mathcal{M}^{2}-computable functions. Then so are also $\theta_{1}+\theta_{2}, \theta_{1}-\theta_{2}$ and $\theta_{1} \theta_{2}$.
- Proof. Let $F_{1}, G_{1}, F_{2}, G_{2}: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$ belong to \mathcal{M}^{2}, and let

$$
\left|\frac{F_{i}(\bar{x}, n)-G_{i}(\bar{x}, n)}{n+1}-\theta_{i}(\bar{x})\right| \leq \frac{1}{n+1}, \quad i=1,2,
$$

for all \bar{x} in \mathbb{N}^{\prime} and all n in \mathbb{N}. To prove the statement about $\theta_{1} \theta_{2}$ (the other cases are easier), we define $k, f, g: \mathbb{N}^{+1} \rightarrow \mathbb{N}$ by $k(\bar{x}, n)=\left(\left|F_{1}(\bar{x}, 0)-G_{1}(\bar{x}, 0)\right|+\left|F_{2}(\bar{x}, 0)-G_{2}(\bar{x}, 0)\right|+3\right)(n+1)-1$,
$f(\bar{x}, n)=F_{1}(\bar{x}, k(\bar{x}, n)) F_{2}(\bar{x}, k(\bar{x}, n))+G_{1}(\bar{x}, k(\bar{x}, n)) G_{2}(\bar{x}, k(\bar{x}, n))$
$g(\bar{x}, n)=F_{1}(\bar{x}, k(\bar{x}, n)) G_{2}(\bar{x}, k(\bar{x}, n))+G_{1}(\bar{x}, k(\bar{x}, n)) F_{2}(\bar{x}, k(\bar{x}, n))$ Then $k, f, g \in \mathcal{1} 1^{2}$, and, for all \bar{x} in \mathbb{N}^{l} and all n in \mathbb{N}, we have
\square

Arithmetical operations on \mathcal{M}^{2}-computable real-valued functions of natural arguments

- Lemma. Let $\theta_{i}: \mathbb{N}^{\prime} \rightarrow \mathbb{R}, i=1,2$, be \mathcal{M}^{2}-computable functions. Then so are also $\theta_{1}+\theta_{2}, \theta_{1}-\theta_{2}$ and $\theta_{1} \theta_{2}$.
- Proof. Let $F_{1}, G_{1}, F_{2}, G_{2}: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$ belong to \mathcal{M}^{2}, and let

$$
\left|\frac{F_{i}(\bar{x}, n)-G_{i}(\bar{x}, n)}{n+1}-\theta_{i}(\bar{x})\right| \leq \frac{1}{n+1}, \quad i=1,2
$$

for all \bar{x} in \mathbb{N}^{\prime} and all n in \mathbb{N}. To prove the statement about $\theta_{1} \theta_{2}$ (the other cases are easier), we define $k, f, g: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$ by
$k(\bar{x}, n)=\left(\left|F_{1}(\bar{x}, 0)-G_{1}(\bar{x}, 0)\right|+\left|F_{2}(\bar{x}, 0)-G_{2}(\bar{x}, 0)\right|+3\right)(n+1)-1$,
$f(\bar{x}, n)=F_{1}(\bar{x}, k(\bar{x}, n)) F_{2}(\bar{x}, k(\bar{x}, n))+G_{1}(\bar{x}, k(\bar{x}, n)) G_{2}(\bar{x}, k(\bar{x}, n))$,
$g(\bar{x}, n)=F_{1}(\bar{x}, k(\bar{x}, n)) G_{2}(\bar{x}, k(\bar{x}, n))+G_{1}(\bar{x}, k(\bar{x}, n)) F_{2}(\bar{x}, k(\bar{x}, n))$.
Then $k, f, g \in \mathcal{M}^{2}$, and, for all \bar{x} in \mathbb{N}^{\prime} and all n in \mathbb{N}, we have

$$
\left|\frac{f(\bar{x}, n)-g(\bar{x}, n)}{(k(\bar{x}, n)+1)^{2}}-\theta_{1}(\bar{x}) \theta_{2}(\bar{x})\right| \leq \frac{1}{n+1} .
$$

Logarithmically bounded summation

- Lemma (Georgiev, 2009). Let $\theta: \mathbb{N}^{k+1} \rightarrow \mathbb{R}$ be an
\mathcal{M}^{2}-computable function, and $\theta^{\Sigma}: \mathbb{N}^{k+1} \rightarrow \mathbb{R}$ be defined by

$$
\theta^{\Sigma}\left(x_{1}, \ldots, x_{k}, y\right)=\sum_{i \leq \log _{2}(y+1)} \theta\left(x_{1}, \ldots, x_{k}, i\right) .
$$

Then θ^{Σ} is also \mathcal{M}^{2}-computable.

- Proof. Let F, G be as in the first lemma with $I=k+1$. If

then

Logarithmically bounded summation

- Lemma (Georgiev, 2009). Let $\theta: \mathbb{N}^{k+1} \rightarrow \mathbb{R}$ be an \mathcal{M}^{2}-computable function, and $\theta^{\Sigma}: \mathbb{N}^{k+1} \rightarrow \mathbb{R}$ be defined by

$$
\theta^{\Sigma}\left(x_{1}, \ldots, x_{k}, y\right)=\sum_{i \leq \log _{2}(y+1)} \theta\left(x_{1}, \ldots, x_{k}, i\right) .
$$

Then θ^{Σ} is also \mathcal{M}^{2}-computable.

- Proof. Let F, G be as in the first lemma with $I=k+1$. If

$$
\begin{aligned}
h^{\Sigma}(\bar{x}, y, n) & =(n+1)\left\lfloor\log _{2}(y+1)\right\rfloor+n \\
f^{\Sigma}(\bar{x}, y, n) & =\sum_{i \leq \log _{2}(y+1)} F\left(\bar{x}, i, h^{\Sigma}(\bar{x}, y, n)\right), \\
g^{\Sigma}(\bar{x}, y, n) & =\sum_{i \leq \log _{2}(y+1)} G\left(\bar{x}, i, h^{\Sigma}(\bar{x}, y, n)\right),
\end{aligned}
$$

then

$$
\left|\frac{f^{\Sigma}(\bar{x}, y, n)-g^{\Sigma}(\bar{x}, y, n)}{h^{\Sigma}(\bar{x}, y, n)+1}-\theta^{\Sigma}(\bar{x}, y)\right| \leq \frac{1}{n+1} .
$$

\mathcal{M}^{2}-computability of sums of series

- Lemma (Georgiev, 2009). Let $\theta: \mathbb{N}^{k+1} \rightarrow \mathbb{R}$ be an \mathcal{M}^{2}-computable function such that the series

$$
\sum_{i=0}^{\infty} \theta\left(x_{1}, \ldots, x_{k}, i\right)
$$

converges for all x_{1}, \ldots, x_{k} in \mathbb{N}, and $\sigma\left(x_{1}, \ldots, x_{k}\right)$ be its sum.
Let there exist a $k+1$-argument function $p \in \mathcal{M}^{2}$ such that

$$
\left|\sum_{i>\log _{2}(y+1)} \theta\left(x_{1}, \ldots, x_{k}, i\right)\right| \leq \frac{1}{n+1}
$$

for any natural numbers x_{1}, \ldots, x_{k}, n and $y=p\left(x_{1}, \ldots, x_{k}, n\right)$. Then the function σ is also \mathcal{M}^{2}-computable.

- Lemma (Georgiev, 2009). Let $\theta: \mathbb{N}^{k+1} \rightarrow \mathbb{R}$ be an \mathcal{M}^{2}-computable function such that the series

$$
\sum_{i=0}^{\infty} \theta\left(x_{1}, \ldots, x_{k}, i\right)
$$

converges for all x_{1}, \ldots, x_{k} in \mathbb{N}, and $\sigma\left(x_{1}, \ldots, x_{k}\right)$ be its sum.
Let there exist a $k+1$-argument function $p \in \mathcal{M}^{2}$ such that

$$
\left|\sum_{i>\log _{2}(y+1)} \theta\left(x_{1}, \ldots, x_{k}, i\right)\right| \leq \frac{1}{n+1}
$$

for any natural numbers x_{1}, \ldots, x_{k}, n and $y=p\left(x_{1}, \ldots, x_{k}, n\right)$. Then the function σ is also \mathcal{M}^{2}-computable.

- Proof. By the previous lemma and the definition of \mathcal{M}^{2}-computability of a real-valued function with natural arguments.

\mathcal{M}^{2}-computability of π

Since $\pi=4 \arctan 1$, it is sufficient to prove that $\arctan 1 \in \mathbb{R}_{\mathcal{M}^{2}}$. This will be done by using the equality

$$
\arctan 1=\arctan \frac{1}{2}+\arctan \frac{1}{3}
$$

and proving that $\arctan \frac{1}{m} \in \mathbb{R}_{\mathcal{M}^{2}}$ for any natural number m, greater than 1. \qquad Then we can apply the
previous lemma to the expansion

where $\theta(i)=\frac{(-1)^{i}}{(2 i+1) m^{2 i+1}}$. The assumptions of the lemma are satisfied thanks to the inequalities

\mathcal{M}^{2}-computability of π

Since $\pi=4 \arctan 1$, it is sufficient to prove that $\arctan 1 \in \mathbb{R}_{\mathcal{M}^{2}}$. This will be done by using the equality

$$
\arctan 1=\arctan \frac{1}{2}+\arctan \frac{1}{3}
$$

and proving that $\arctan \frac{1}{m} \in \mathbb{R}_{\mathcal{M}^{2}}$ for any natural number m, greater than 1 . Let $m \in \mathbb{N}$ and $m>1$. Then we can apply the previous lemma to the expansion

$$
\arctan \frac{1}{m}=\sum_{i=0}^{\infty} \theta(i)
$$

where $\theta(i)=\frac{(-1)^{i}}{(2 i+1) m^{2 i+1}}$. The assumptions of the lemma are
satisfied thanks to the inequalities

\mathcal{M}^{2}-computability of π

Since $\pi=4 \arctan 1$, it is sufficient to prove that $\arctan 1 \in \mathbb{R}_{\mathcal{M}^{2}}$. This will be done by using the equality

$$
\arctan 1=\arctan \frac{1}{2}+\arctan \frac{1}{3}
$$

and proving that $\arctan \frac{1}{m} \in \mathbb{R}_{\mathcal{M}^{2}}$ for any natural number m, greater than 1 . Let $m \in \mathbb{N}$ and $m>1$. Then we can apply the previous lemma to the expansion

$$
\arctan \frac{1}{m}=\sum_{i=0}^{\infty} \theta(i)
$$

where $\theta(i)=\frac{(-1)^{i}}{(2 i+1) m^{2 i+1}}$. The assumptions of the lemma are satisfied thanks to the inequalities

$$
\begin{gathered}
\left|\frac{(i+1) \bmod 2-i \bmod 2}{\min \left((2 i+1)(m+2)^{2 i+1}, n+1\right)}-\theta(i)\right|<\frac{1}{n+1}, \\
\left|\sum_{i>\log _{2}(y+1)} \theta(i)\right|<\frac{1}{2(y+1)^{2}}
\end{gathered}
$$

A generalization

- Theorem. Let $\chi, \psi, \varphi: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^{2}, \varphi$ has a Δ_{0} definable graph, and a real number $\rho>1$ exists such that $\varphi(\bar{x}, i) \geq \rho^{i}$ for all $\bar{x} \in \mathbb{N}^{\prime}, i \in \mathbb{N}$. Let $\theta: \mathbb{N}^{l+1} \rightarrow \mathbb{R}$ be defined by $\theta(\bar{x}, i)=(-1)^{\chi(\bar{x}, i)} \psi(\bar{x}, i) / \varphi(\bar{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\bar{x}, i)$ is convergent, and its sum is a \mathcal{M}^{2}-computable function of \bar{x}.
polynomial, and it is easy to see that θ is \mathcal{M}^{2}-computable. Now where a, b, c are positive integers such that $1+1 / b<\rho$, Then $m>c \log _{2}(a(b+1)(n+1))$, hence

A generalization

- Theorem. Let $\chi, \psi, \varphi: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^{2}, \varphi$ has a Δ_{0} definable graph, and a real number $\rho>1$ exists such that $\varphi(\bar{x}, i) \geq \rho^{i}$ for all $\bar{x} \in \mathbb{N}^{\prime}, i \in \mathbb{N}$. Let $\theta: \mathbb{N}^{l+1} \rightarrow \mathbb{R}$ be defined by $\theta(\bar{x}, i)=(-1)^{\chi(\bar{x}, i)} \psi(\bar{x}, i) / \varphi(\bar{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\bar{x}, i)$ is convergent, and its sum is a \mathcal{M}^{2}-computable function of \bar{x}.
- Proof. The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^{2}-computable.

A generalization

- Theorem. Let $\chi, \psi, \varphi: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^{2}, \varphi$ has a Δ_{0} definable graph, and a real number $\rho>1$ exists such that $\varphi(\bar{x}, i) \geq \rho^{i}$ for all $\bar{x} \in \mathbb{N}^{\prime}, i \in \mathbb{N}$. Let $\theta: \mathbb{N}^{1+1} \rightarrow \mathbb{R}$ be defined by $\theta(\bar{x}, i)=(-1)^{\chi(\bar{x}, i)} \psi(\bar{x}, i) / \varphi(\bar{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\bar{x}, i)$ is convergent, and its sum is a \mathcal{M}^{2}-computable function of \bar{x}.
- Proof. The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^{2}-computable. Now let $p: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$ be defined by $p(\bar{x}, n)=(a(b+1)(n+1))^{c}-1$, where a, b, c are positive integers such that $1+1 / b<\rho$, $(1+1 / b)^{c} \geq 2$, and $|\theta(\bar{x}, i)| \leq a(1+1 / b)^{-i}$ for all $i \in \mathbb{N}$. Clearly $p \in \mathcal{M}^{2}$.

A generalization

- Theorem. Let $\chi, \psi, \varphi: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^{2}, \varphi$ has a Δ_{0} definable graph, and a real number $\rho>1$ exists such that $\varphi(\bar{x}, i) \geq \rho^{i}$ for all $\bar{x} \in \mathbb{N}^{\prime}, i \in \mathbb{N}$. Let $\theta: \mathbb{N}^{I+1} \rightarrow \mathbb{R}$ be defined by $\theta(\bar{x}, i)=(-1)^{\chi(\bar{x}, i)} \psi(\bar{x}, i) / \varphi(\bar{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\bar{x}, i)$ is convergent, and its sum is a \mathcal{M}^{2}-computable function of \bar{x}.
- Proof. The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^{2}-computable. Now let $p: \mathbb{N}^{1+1} \rightarrow \mathbb{N}$ be defined by $p(\bar{x}, n)=(a(b+1)(n+1))^{c}-1$, where a, b, c are positive integers such that $1+1 / b<\rho$, $(1+1 / b)^{c} \geq 2$, and $|\theta(\bar{x}, i)| \leq a(1+1 / b)^{-i}$ for all $i \in \mathbb{N}$. Clearly $p \in \mathcal{M}^{2}$. Let $\bar{x} \in \mathbb{N}^{\prime}, n \in \mathbb{N}, y=p(\bar{x}, n), m=\left\lfloor\log _{2}(y+1)\right\rfloor+1$.
Then $m>c \log _{2}(a(b+1)(n+1))$, hence

$$
\begin{gathered}
\left|\sum_{i>\log _{2}(y+1)} \theta(\bar{x}, i)\right|=\left|\sum_{i=m}^{\infty} \theta(\bar{x}, i)\right| \leq \sum_{i=m}^{\infty} a(1+1 / b)^{-i}= \\
a(1+1 / b)^{-m}(b+1)<a\left((1+1 / b)^{c}\right)^{-\log _{2}(a(b+1)(n+1))}(b+1) \leq \\
a(a(b+1)(n+1))^{-1}(b+1)=\frac{1}{n+1} .
\end{gathered}
$$

Some other \mathcal{M}^{2}-computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009) proofs of the \mathcal{M}^{2}-computability of the following constants were also given (the corresponding expansions were used in the proofs):

- The Erdös-Borwein Constant

$$
E=\sum_{i=1}^{\infty} \frac{1}{2^{i}-1}
$$

- The Paper Folding Constant

Some other \mathcal{M}^{2}-computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009) proofs of the \mathcal{M}^{2}-computability of the following constants were also given (the corresponding expansions were used in the proofs):

- The Erdös-Borwein Constant

$$
E=\sum_{i=1}^{\infty} \frac{1}{2^{i}-1}
$$

- The logarithm of the Golden Mean

$$
2(\ln \varphi)^{2}=\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i^{2}\binom{2 i}{i}}
$$

- The Paper Folding Constant

Some other \mathcal{M}^{2}-computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009) proofs of the \mathcal{M}^{2}-computability of the following constants were also given (the corresponding expansions were used in the proofs):

- The Erdös-Borwein Constant

$$
E=\sum_{i=1}^{\infty} \frac{1}{2^{i}-1}
$$

- The logarithm of the Golden Mean

$$
2(\ln \varphi)^{2}=\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i^{2}\binom{2 i}{i}}
$$

- The Paper Folding Constant

$$
\sigma=\sum_{i=0}^{\infty} 2^{-2^{i}}\left(1-2^{-2^{i+2}}\right)^{-1}
$$

A formula for the logarithms of the positive integers

- Theorem. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

$$
n=2^{\left\lfloor\log _{2} n\right\rfloor} \prod_{i\left\lfloor\log _{2} n\right\rfloor} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-\left\lfloor n / 2^{i}\right\rfloor \bmod 2} .
$$

- Example. $102=2^{6} \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$
 for any $i \in \mathbb{N},\left\lfloor n / 2^{0}\right\rfloor=n,\left\lfloor n / 2^{m}\right\rfloor=1$, and $\left\lfloor n / 2^{i+1}\right\rfloor \geq 1$ for any $i<m$, we have

- Corollary. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

A formula for the logarithms of the positive integers

- Theorem. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

$$
n=2^{\left\lfloor\log _{2} n\right\rfloor} \prod_{i<\left\lfloor\log _{2} n\right\rfloor} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-\left\lfloor n / 2^{i}\right\rfloor \bmod 2} .
$$

- Example. $102=2^{6} \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.

$i<m$, we have

- Corollary. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

A formula for the logarithms of the positive integers

- Theorem. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

$$
n=2^{\left\lfloor\log _{2} n\right\rfloor} \prod_{i<\left\lfloor\log _{2} n\right\rfloor} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-\left\lfloor n / 2^{i}\right\rfloor \bmod 2} .
$$

- Example. $102=2^{6} \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.
- Proof. Let $n \in \mathbb{N} \backslash\{0\}$, and let us set $m=\left\lfloor\log _{2} n\right\rfloor$, $a_{i}=\left\lfloor n / 2^{i}\right\rfloor \bmod 2, i=0,1,2, \ldots$ Since $\left\lfloor n / 2^{i}\right\rfloor=2\left\lfloor n / 2^{i+1}\right\rfloor+a_{i}$ for any $i \in \mathbb{N},\left\lfloor n / 2^{0}\right\rfloor=n,\left\lfloor n / 2^{m}\right\rfloor=1$, and $\left\lfloor n / 2^{i+1}\right\rfloor \geq 1$ for any $i<m$, we have

$$
n=\prod_{i<m} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i+1}\right\rfloor}=2^{m} \prod_{i<m} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-a_{i}} .
$$

A formula for the logarithms of the positive integers

- Theorem. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

$$
n=2^{\left\lfloor\log _{2} n\right\rfloor} \prod_{i<\left\lfloor\log _{2} n\right\rfloor} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-\left\lfloor n / 2^{i}\right\rfloor \bmod 2} .
$$

- Example. $102=2^{6} \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.
- Proof. Let $n \in \mathbb{N} \backslash\{0\}$, and let us set $m=\left\lfloor\log _{2} n\right\rfloor$, $a_{i}=\left\lfloor n / 2^{i}\right\rfloor \bmod 2, i=0,1,2, \ldots$ Since $\left\lfloor n / 2^{i}\right\rfloor=2\left\lfloor n / 2^{i+1}\right\rfloor+a_{i}$ for any $i \in \mathbb{N},\left\lfloor n / 2^{0}\right\rfloor=n,\left\lfloor n / 2^{m}\right\rfloor=1$, and $\left\lfloor n / 2^{i+1}\right\rfloor \geq 1$ for any $i<m$, we have

$$
n=\prod_{i<m} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i+1}\right\rfloor}=2^{m} \prod_{i<m} \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-a_{i}} .
$$

- Corollary. For any $n \in \mathbb{N} \backslash\{0\}$, the following equality holds:

$$
\ln n=\left\lfloor\log _{2} n\right\rfloor \ln 2+\sum_{i<\left\lfloor\log _{2} n\right\rfloor}\left(\left\lfloor n / 2^{i}\right\rfloor \bmod 2\right) \ln \frac{\left\lfloor n / 2^{i}\right\rfloor}{\left\lfloor n / 2^{i}\right\rfloor-1} .
$$

\mathcal{M}^{2}-computability of the logarithmic function on the positive integers

- Theorem. The function $\Lambda: \mathbb{N} \rightarrow \mathbb{R}$ defined by $\Lambda(t)=\ln (t+1)$ is \mathcal{M}^{2}-computable.
- Proof. By the corollary in the previous frame,

where

$$
\Psi(x)=(x \bmod 2) \Phi(x) .
$$

- Corollary. There exist three-argument functions $F, G \in \mathcal{M}^{2}$ such that

\mathcal{M}^{2}－computability of the logarithmic function

 on the positive integers－Theorem．The function $\Lambda: \mathbb{N} \rightarrow \mathbb{R}$ defined by $\Lambda(t)=\ln (t+1)$ is \mathcal{M}^{2}－computable．
－Proof．By the corollary in the previous frame，

$$
\Lambda(t)=\left\lfloor\log _{2}(t+1)\right\rfloor \Phi(0)+\sum_{i \leq \log _{2}(t+1)} \Psi\left(\left\lfloor(t+1) / 2^{i}\right\rfloor-2\right)
$$

where

$$
\begin{aligned}
& \Phi(x)=\ln \frac{x+2}{x+1}=2 \sum_{i=0}^{\infty} \frac{1}{(2 i+1)(2 x+3)^{2 i+1}}, \\
& \Psi(x)=(x \bmod 2) \Phi(x) .
\end{aligned}
$$

－Corollary．There exist three－argument functions $F, G \in \mathcal{M}^{2}$ such that

\mathcal{M}^{2}-computability of the logarithmic function

on the positive integers

- Theorem. The function $\Lambda: \mathbb{N} \rightarrow \mathbb{R}$ defined by $\Lambda(t)=\ln (t+1)$ is \mathcal{M}^{2}-computable.
- Proof. By the corollary in the previous frame,

$$
\Lambda(t)=\left\lfloor\log _{2}(t+1)\right\rfloor \Phi(0)+\sum_{i \leq \log _{2}(t+1)} \Psi\left(\left\lfloor(t+1) / 2^{i}\right\rfloor \dot{-}\right)
$$

where

$$
\begin{aligned}
& \Phi(x)=\ln \frac{x+2}{x+1}=2 \sum_{i=0}^{\infty} \frac{1}{(2 i+1)(2 x+3)^{2 i+1}}, \\
& \Psi(x)=(x \bmod 2) \Phi(x)
\end{aligned}
$$

- Corollary. There exist three-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$
\left|\frac{F(p, q, n)-G(p, q, n)}{n+1}-\ln \frac{p+1}{q+1}\right| \leq \frac{1}{n+1}
$$

for all p, q, n in \mathbb{N}.

The logarithmic function preserves \mathcal{M}^{2}-computability

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed under substitution. Then $\ln \xi \in \mathbb{R}_{\mathcal{F}}$ for any positive $\xi \in \mathbb{R}_{\mathcal{F}}$.

Functions $P, Q \in \mathcal{F}$ can be found such that $x_{n}^{\prime}=\frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set $f(n)=F(P(n), Q(n), 2 n+1), g(n)=G(P(n), Q(n), 2 n+1)$,
then $f, g \in \mathcal{F}$, and, for all $n \in \mathbb{N}$, we have

The logarithmic function preserves \mathcal{M}^{2}-computability

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed under substitution. Then $\ln \xi \in \mathbb{R}_{\mathcal{F}}$ for any positive $\xi \in \mathbb{R}_{\mathcal{F}}$.
- Proof. Let $\xi>0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F}-sequence $x_{0}, x_{1}, x_{2}, \ldots$ satisfies $\left|x_{n}-\xi\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$.

Functions $P, Q \in \mathcal{F}$ can be found such that $x_{n}^{\prime}=\frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set
then $f, g \in \mathcal{F}$, and, for all $n \in \mathbb{N}$, we have

The logarithmic function preserves \mathcal{M}^{2}-computability

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed under substitution. Then $\ln \xi \in \mathbb{R}_{\mathcal{F}}$ for any positive $\xi \in \mathbb{R}_{\mathcal{F}}$.
- Proof. Let $\xi>0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F}-sequence $x_{0}, x_{1}, x_{2}, \ldots$ satisfies $\left|x_{n}-\xi\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. Let $x_{n}^{\prime}=x_{(k+1) n+k}$, where k is a natural number such that $\frac{3}{k+1} \leq \xi$. Then $x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ is again an \mathcal{F}-sequence, and, for any $n \in \mathbb{N}$, $\left|x_{n}^{\prime}-\xi\right| \leq((k+1)(n+1))^{-1} \leq \frac{1}{k+1}$. Thus $x_{n}^{\prime} \geq \frac{2}{k+1}$, and hence

$$
\left|\ln x_{n}^{\prime}-\ln \xi\right|<\frac{k+1}{2}((k+1)(n+1))^{-1}=\frac{1}{2 n+2} .
$$

Functions $P, Q \in \mathcal{F}$ can be fo
$n \in \mathbb{N}$. If F and G are as in th
$f(n)=F(P(n), Q(n), 2 n+1)$
then $f, g \in \mathcal{F}$, and, for all $n \in \mathbb{N}$, we have

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed under substitution. Then $\ln \xi \in \mathbb{R}_{\mathcal{F}}$ for any positive $\xi \in \mathbb{R}_{\mathcal{F}}$.
- Proof. Let $\xi>0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F}-sequence $x_{0}, x_{1}, x_{2}, \ldots$ satisfies $\left|x_{n}-\xi\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. Let $x_{n}^{\prime}=x_{(k+1) n+k}$, where k is a natural number such that $\frac{3}{k+1} \leq \xi$. Then $x_{0}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ is again an \mathcal{F}-sequence, and, for any $n \in \mathbb{N}$, $\left|x_{n}^{\prime}-\xi\right| \leq((k+1)(n+1))^{-1} \leq \frac{1}{k+1}$. Thus $x_{n}^{\prime} \geq \frac{2}{k+1}$, and hence

$$
\left|\ln x_{n}^{\prime}-\ln \xi\right|<\frac{k+1}{2}((k+1)(n+1))^{-1}=\frac{1}{2 n+2} .
$$

Functions $P, Q \in \mathcal{F}$ can be found such that $x_{n}^{\prime}=\frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set

$$
f(n)=F(P(n), Q(n), 2 n+1), g(n)=G(P(n), Q(n), 2 n+1),
$$

then $f, g \in \mathcal{F}$, and, for all $n \in \mathbb{N}$, we have

$$
\left|\frac{f(n)-g(n)}{2 n+2}-\ln \xi\right| \leq\left|\frac{f(n)-g(n)}{2 n+2}-\ln x_{n}^{\prime}\right|+\left|\ln x_{n}^{\prime}-\ln \xi\right|<\frac{1}{n+1} .
$$

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed both under substitution and under bounded least number operator. Then $e^{\eta} \in \mathbb{R}_{\mathcal{F}}$ for any $\eta \in \mathbb{R}_{\mathcal{F}}$.

with F, G as in the last corollary and $\tilde{n}=4 a(n+1)-1$, hence $\left|y_{n, i}-\ln x_{n, i}\right| \leq \frac{1}{4_{a}(n+1)}$. Finally, by setting

The exponential function preserves \mathcal{M}^{2}-computability

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed both under substitution and under bounded least number operator. Then $e^{\eta} \in \mathbb{R}_{\mathcal{F}}$ for any $\eta \in \mathbb{R}_{\mathcal{F}}$.
- Proof. Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F}-sequence $y_{0}, y_{1}, y_{2}, \ldots$ satisfies $\left|y_{n}-\eta\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n, i}=\frac{i+1}{n+1}$.
with F, G as in the last corollary and $\tilde{n}=4 a(n+1)-1$, hence $\left|y_{n, i}-\ln x_{n, i}\right| \leq \frac{1}{4 a(n+1)}$. Finally, by setting

The exponential function preserves \mathcal{M}^{2}-computability

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed both under substitution and under bounded least number operator. Then $e^{\eta} \in \mathbb{R}_{\mathcal{F}}$ for any $\eta \in \mathbb{R}_{\mathcal{F}}$.
- Proof. Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F}-sequence $y_{0}, y_{1}, y_{2}, \ldots$ satisfies $\left|y_{n}-\eta\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n, i}=\frac{i+1}{n+1}$. Let $a \in \mathbb{N}, a \geq e^{\eta}$. We set further

$$
y_{n, i}=\frac{F(i, n, \tilde{n})-G(i, n, \tilde{n})}{\tilde{n}+1}
$$

with F, G as in the last corollary and $\tilde{n}=4 a(n+1)-1$, hence $\left|y_{n, i}-\ln x_{n, i}\right| \leq \frac{1}{4 a(n+1)}$.

Finally, by setting

The exponential function preserves \mathcal{M}^{2}-computability

- Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} such that $\mathcal{F} \supseteq \mathcal{M}^{2}$ and \mathcal{F} is closed both under substitution and under bounded least number operator. Then $e^{\eta} \in \mathbb{R}_{\mathcal{F}}$ for any $\eta \in \mathbb{R}_{\mathcal{F}}$.
- Proof. Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F}-sequence $y_{0}, y_{1}, y_{2}, \ldots$ satisfies $\left|y_{n}-\eta\right| \leq(n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n, i}=\frac{i+1}{n+1}$. Let $a \in \mathbb{N}, a \geq e^{\eta}$. We set further

$$
y_{n, i}=\frac{F(i, n, \tilde{n})-G(i, n, \tilde{n})}{\tilde{n}+1}
$$

with F, G as in the last corollary and $\tilde{n}=4 a(n+1)-1$, hence $\left|y_{n, i}-\ln x_{n, i}\right| \leq \frac{1}{4 a(n+1)}$. Finally, by setting
$i_{n}=\min \left\{i \left\lvert\, y_{n, i} \geq y_{\tilde{n}}+\frac{1}{2 a(n+1)} \vee x_{n, i}=a\right.\right\}, x_{n}=x_{n, i_{n}}-\frac{1}{n+1}$
we get an \mathcal{F}-sequence $x_{0}, x_{1} \cdot x_{2}, \ldots$, such that $0 \leq x_{n}<x_{n, i_{n}} \leq a$ for all $n \in \mathbb{N}$. We will show that $\left|x_{n}-e^{\eta}\right| \leq(n+1)^{-1}$ for any $n \in \mathbb{N}$.

Proof of the inequality $\left|x_{n}-e^{\eta}\right| \leq(n+1)^{-1}$

We start with proving that, for any $n \in \mathbb{N}$, we have $x_{n}+(n+1)^{-1} \geq e^{\eta}$, i.e. $x_{n, i_{n}} \geq e^{\eta}$. This is clear in the case of $x_{n, i_{n}}=a$. Consider now an $n \in \mathbb{N}$ such that $x_{n, i_{n}} \neq a$. By the definition of i_{n}, the inequality $y_{n, i_{n}} \geq y_{n}+\frac{1}{2 a(n+1)}$ holds. Then $\ln x_{n, i_{n}} \geq y_{n, i_{n}}-\frac{1}{4 a(n+1)} \geq y_{\tilde{n}}+\frac{1}{4 a(n+1)} \geq \eta$, hence $x_{n, i_{n}} \geq e^{\eta}$.

Suppose now that $i_{n}>1$. Then, again by the definition of i_{n}, the inequality $y_{n, i_{n}-1}<y_{\tilde{n}}+\frac{1}{2 a(n+1)}$ holds. Therefore $\ln x_{n, i_{n}-1} \leq y_{n, i_{n}-1}+\frac{1}{4 a(n+1)}<y_{n}+\frac{3}{4 a(n+1)} \leq \eta+\frac{1}{a(n+1)}$, hence $\eta>\ln x_{n, i_{n}-1}-\frac{1}{a(n+1)}$. Since $x_{n, i_{n}-2}<x_{n, i_{n}-1}<a$, we have $\ln x_{n, i_{n}-1}-\ln x_{n, i_{n}-2}>\frac{1}{2}\left(x_{n, i_{n}-1}-x_{n, i_{n}-2}\right)=\frac{1}{a(n+1)}$, hence

We start with proving that, for any $n \in \mathbb{N}$, we have $x_{n}+(n+1)^{-1} \geq e^{\eta}$, i.e. $x_{n, i_{n}} \geq e^{\eta}$. This is clear in the case of $x_{n, i_{n}}=a$. Consider now an $n \in \mathbb{N}$ such that $x_{n, i_{n}} \neq a$. By the definition of i_{n}, the inequality $y_{n, i_{n}} \geq y_{\tilde{n}}+\frac{1}{2 a(n+1)}$ holds. Then $\ln x_{n, i_{n}} \geq y_{n, i_{n}}-\frac{1}{4 a(n+1)} \geq y_{\tilde{n}}+\frac{1}{4 a(n+1)} \geq \eta$, hence $x_{n, i_{n}} \geq e^{\eta}$.
It is sufficient now to prove that $e^{\eta} \geq x_{n}-(n+1)^{-1}$ for any $n \in \mathbb{N}$.
This inequality clearly holds if $i_{n} \leq 1$, since then $x_{n, i_{n}} \leq \frac{2}{n+1}$, hence $x_{n}-(n+1)^{-1} \leq 0<e^{\eta}$.
Suppose now that $i_{n}>1$. Then, again by the definition of i_{n}, the inequality $y_{n, i_{n}-1}<y_{n}+\frac{1}{2 a(n+1)}$ holds. Therefore

We start with proving that, for any $n \in \mathbb{N}$, we have $x_{n}+(n+1)^{-1} \geq e^{\eta}$, i.e. $x_{n, i_{n}} \geq e^{\eta}$. This is clear in the case of $x_{n, i_{n}}=a$. Consider now an $n \in \mathbb{N}$ such that $x_{n, i_{n}} \neq a$. By the definition of i_{n}, the inequality $y_{n, i_{n}} \geq y_{\tilde{n}}+\frac{1}{2 a(n+1)}$ holds. Then $\ln x_{n, i_{n}} \geq y_{n, i_{n}}-\frac{1}{4 a(n+1)} \geq y_{\tilde{n}}+\frac{1}{4 a(n+1)} \geq \eta$, hence $x_{n, i_{n}} \geq e^{\eta}$.
It is sufficient now to prove that $e^{\eta} \geq x_{n}-(n+1)^{-1}$ for any $n \in \mathbb{N}$.
This inequality clearly holds if $i_{n} \leq 1$, since then $x_{n, i_{n}} \leq \frac{2}{n+1}$, hence $x_{n}-(n+1)^{-1} \leq 0<e^{\eta}$.
Suppose now that $i_{n}>1$. Then, again by the definition of i_{n}, the inequality $y_{n, i_{n}-1}<y_{n}+\frac{1}{2 a(n+1)}$ holds. Therefore
$\ln x_{n, i_{n}-1} \leq y_{n, i_{n}-1}+\frac{1}{4 a(n+1)}<y_{\tilde{n}}+\frac{3}{4 a(n+1)} \leq \eta+\frac{1}{a(n+1)}$, hence
$\eta>\ln x_{n, i_{n}-1}-\frac{1}{a(n+1)}$.

We start with proving that, for any $n \in \mathbb{N}$, we have $x_{n}+(n+1)^{-1} \geq e^{\eta}$, i.e. $x_{n, i_{n}} \geq e^{\eta}$. This is clear in the case of $x_{n, i_{n}}=a$. Consider now an $n \in \mathbb{N}$ such that $x_{n, i_{n}} \neq a$. By the definition of i_{n}, the inequality $y_{n, i_{n}} \geq y_{\tilde{n}}+\frac{1}{2 a(n+1)}$ holds. Then $\ln x_{n, i_{n}} \geq y_{n, i_{n}}-\frac{1}{4 a(n+1)} \geq y_{\tilde{n}}+\frac{1}{4 a(n+1)} \geq \eta$, hence $x_{n, i_{n}} \geq e^{\eta}$.
It is sufficient now to prove that $e^{\eta} \geq x_{n}-(n+1)^{-1}$ for any $n \in \mathbb{N}$.
This inequality clearly holds if $i_{n} \leq 1$, since then $x_{n, i_{n}} \leq \frac{2}{n+1}$, hence $x_{n}-(n+1)^{-1} \leq 0<e^{\eta}$.
Suppose now that $i_{n}>1$. Then, again by the definition of i_{n}, the inequality $y_{n, i_{n}-1}<y_{n}+\frac{1}{2 a(n+1)}$ holds. Therefore
$\ln x_{n, i_{n}-1} \leq y_{n, i_{n}-1}+\frac{1}{4 a(n+1)}<y_{n}+\frac{3}{4 a(n+1)} \leq \eta+\frac{1}{a(n+1)}$, hence
$\eta>\ln x_{n, i_{n}-1}-\frac{1}{a(n+1)}$. Since $x_{n, i_{n}-2}<x_{n, i_{n}-1}<a$, we have $\ln x_{n, i_{n}-1}-\ln x_{n, i_{n}-2}>\frac{1}{a}\left(x_{n, i_{n}-1}-x_{n, i_{n}-2}\right)=\frac{1}{a(n+1)}$, hence $\eta>\ln x_{n, i_{n}-2}$ and therefore $e^{\eta}>x_{n, i_{n}-2}=x_{n}-(n+1)^{-1}$.

- Theorem. For any rational number x, the real numbers $\sin x$ and $\cos x$ are \mathcal{M}^{2}-computable.
- Proof. It is sufficient to prove the statement of the theorem for $x>0$. For any $m \in \mathbb{N} \backslash\{0\}$, the numbers $\sin \frac{1}{m}$ and $\cos \frac{1}{m}$ are \mathcal{M}^{2}-computable thanks to the expansions

The \mathcal{M}^{2}-computability of $\sin x$ and $\cos x$ for any positive rational number x follows from here by an induction making use of the equalities

A partial result concerning the sine and cosine functions

- Theorem. For any rational number x, the real numbers $\sin x$ and $\cos x$ are \mathcal{M}^{2}-computable.
- Proof. It is sufficient to prove the statement of the theorem for $x>0$. For any $m \in \mathbb{N} \backslash\{0\}$, the numbers $\sin \frac{1}{m}$ and $\cos \frac{1}{m}$ are \mathcal{M}^{2}-computable thanks to the expansions

$$
\sin \frac{1}{m}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i+1)!m^{2 i+1}}, \quad \cos \frac{1}{m}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i)!m^{2 i}}
$$

The \mathcal{M}^{2}-computability of $\sin x$ and $\cos x$ for any positive
rational number x follows from here by an induction making use of the equalities

- Theorem. For any rational number x, the real numbers $\sin x$ and $\cos x$ are \mathcal{M}^{2}-computable.
- Proof. It is sufficient to prove the statement of the theorem for $x>0$. For any $m \in \mathbb{N} \backslash\{0\}$, the numbers $\sin \frac{1}{m}$ and $\cos \frac{1}{m}$ are \mathcal{M}^{2}-computable thanks to the expansions

$$
\sin \frac{1}{m}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i+1)!m^{2 i+1}}, \quad \cos \frac{1}{m}=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(2 i)!m^{2 i}}
$$

The \mathcal{M}^{2}-computability of $\sin x$ and $\cos x$ for any positive rational number x follows from here by an induction making use of the equalities

$$
\begin{aligned}
& \sin \frac{n+1}{m}=\sin \frac{n}{m} \cos \frac{1}{m}+\cos \frac{n}{m} \sin \frac{1}{m} \\
& \cos \frac{n+1}{m}=\cos \frac{n}{m} \cos \frac{1}{m}-\sin \frac{n}{m} \sin \frac{1}{m}
\end{aligned}
$$

A partial result concerning the arctan function

- Theorem. For any rational number $x, \arctan x \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \backslash\{0,1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \geq 0, y \geq 0$, the equality

holds. By using its instance with $x=y+1$ we see that
$\mathbb{N} \backslash\{0\} \subset A$. Now an induction on q can be used to show that
$\frac{p}{q} \in A$ for any relatively prime $p, q \in \mathbb{N} \backslash\{0\}$. The case of $q=1$
is already settled, and the case of $p=1$ is obvious. Let $p>1$
and $q>1$. Then $\left(p q^{\prime}\right) \bmod q=1$ for some positive integer
$q^{\prime}<q$, hence $p q^{\prime}=q p^{\prime}+1$ for some $p^{\prime} \in \mathbb{N} \backslash\{0\}$, and the
above equality yields

A partial result concerning the arctan function

- Theorem. For any rational number $x, \arctan x \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \backslash\{0,1\}$. We will prove the theorem by showing that all positive rational numbers belong to A.

holds. By using its instance with $x=y+1$ we see that $\mathbb{N} \backslash\{0\} \subset A$. Now an induction on q can be used to show that $\frac{p}{q} \in A$ for any relatively prime $p, q \in \mathbb{N} \backslash\{0\}$. The case of $q=1$ is already settled, and the case of $p=1$ is obvious. Let $p>1$ and $q>1$. Then $\left(p q^{\prime}\right) \bmod q=1$ for some positive integer $q^{\prime}<q$, hence $p q^{\prime}=q p^{\prime}+1$ for some $p^{\prime} \in \mathbb{N} \backslash\{0\}$, and the above equality yields

A partial result concerning the arctan function

- Theorem. For any rational number $x, \arctan x \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \backslash\{0,1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \geq 0, y \geq 0$, the equality

$$
\arctan x=\arctan y+\arctan \frac{x-y}{1+x y}
$$

holds. By using its instance with $x=y+1$ we see that $\mathbb{N} \backslash\{0\} \subset A$.
$\frac{p}{q} \in A$ for any relative
is already settled, and
and $q>1$. Then $(p q$
$q^{\prime}<q$, hence $p q^{\prime}=q$
above equality yields

A partial result concerning the arctan function

- Theorem. For any rational number $x, \arctan x \in \mathbb{R}_{\mathcal{M}^{2}}$.
- Proof. Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \backslash\{0,1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \geq 0, y \geq 0$, the equality

$$
\arctan x=\arctan y+\arctan \frac{x-y}{1+x y}
$$

holds. By using its instance with $x=y+1$ we see that $\mathbb{N} \backslash\{0\} \subset A$. Now an induction on q can be used to show that $\frac{p}{q} \in A$ for any relatively prime $p, q \in \mathbb{N} \backslash\{0\}$. The case of $q=1$ is already settled, and the case of $p=1$ is obvious. Let $p>1$ and $q>1$. Then $\left(p q^{\prime}\right) \bmod q=1$ for some positive integer $q^{\prime}<q$, hence $p q^{\prime}=q p^{\prime}+1$ for some $p^{\prime} \in \mathbb{N} \backslash\{0\}$, and the above equality yields

$$
\arctan \frac{p}{q}=\arctan \frac{p^{\prime}}{q^{\prime}}+\arctan \frac{1}{q q^{\prime}+p p^{\prime}}
$$

Conclusion
The theory of \mathcal{M}^{2}-computability of real numbers seems to be an interesting, challenging and exciting subject.

Berarducci，A．，D＇Aquino，P．，Δ_{0} complexity of the relation $y=\prod_{i \leq n} F(i)$ ，Ann．Pure Appl．Logic， 75 （1995），49－56．
固 Georgiev，I．，＂Subrecursive Computability in Analysis＂，MSc Thesis，Sofia University， 2009 （in Bulgarian）．

國 Grzegorczyk，A．，＂Some Classes of Recursive Functions＂ Dissertationes Math．（Rozprawy Mat．），4，Warsaw， 1953.
Raris，J．B．，Wilkie，A．J，Woods，A．R．，Provability of the pigeonhole principle and the existence of infinitely many primes，Journal of Symbolic Logic， 53 （1988），1235－1244．

围 Skordev，D．，Computability of real numbers by using a given class of functions in the set of the natural numbers，Math． Log．Quart．， 48 （2002），Suppl．1，91－106．
目 Tent，K．，Ziegler，M．，Computable functions of reals， arXiv：0903．1384v4［math．LO］，March 2009 （Last updated： July 24,2009 ）

THANK YOU FOR YOUR ATTENTION!

[^0]: ${ }^{1}$ The same sequences were used before in a paper of the first author for proving that e and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^{2}}$, where \mathcal{E}^{2} is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^{2}-computability of their limits was observed by the second author in June

[^1]: ${ }^{1}$ The same sequences were used before in a paper of the first author for proving that e and Liouville's number belong to $\mathbb{R}_{\mathcal{E}}{ }^{2}$, where \mathcal{E}^{2} is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^{2}-computability of their limits was observed by the second author in June

[^2]: ${ }^{1}$ The same sequences were used before in a paper of the first author for proving that e and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^{2}}$, where \mathcal{E}^{2} is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^{2}-computability of their limits was observed by the second author in June 2008.

[^3]: ${ }^{1}$ The same sequences were used before in a paper of the first author for proving that e and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^{2}}$, where \mathcal{E}^{2} is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^{2}-computability of their limits was observed by the second author in June 2008.

