\mathcal{M}^2 -Computable Real Numbers

Dimiter Skordev¹ Andreas Weiermann²

¹University of Sofia, Bulgaria

²Ghent University, Belgium

Workshop on Computability Theory 2009, Sofia

The results on the subject of the talk are obtained by the authors and Ivan Georgiev during the period June 2008 – July 2009.

< □ > < □ > < □ > < □ > < □ > < □ > = □

Outline

- Introduction
 - \bullet The class \mathcal{M}^2
 - $\mathcal{F} ext{-computability of real numbers}$
- 2 Proving \mathcal{M}^2 -computability by using appropriate partial sums
 - \mathcal{M}^2 -computability of the number e
 - \mathcal{M}^2 -computability of Liouville's number
 - A partial generalization
- (3) Stronger tools for proving \mathcal{M}^2 -computability of real numbers
 - \mathcal{M}^2 -computable real-valued function with natural arguments
 - Logarithmically bounded summation
 - \mathcal{M}^2 -computability of sums of series
- Applications of the stronger tools
 - \mathcal{M}^2 -computability of π
 - A generalization
 - \bullet Some other $\mathcal{M}^2\text{-}\mathsf{computable}$ constants
 - \bullet Preservation of $\mathcal{M}^2\text{-}\mathsf{computability}$ by certain functions

◆□> ◆圖> ◆目> ◆目> 三日

- 5 Conclusion
- 6 References

The class \mathcal{M}^2

- **Definition.** The class \mathcal{M}^2 is the smallest class \mathcal{F} of total functions in \mathbb{N} such that \mathcal{F} contains the projection functions, the constant 0, the successor function, the multiplication function, as well as the function $\lambda xy.x y$, and \mathcal{F} is closed under substitution and bounded least number operator.
- **Remark.** There are different variants of the definition of $(\mu i \le y)[f(x_1, \ldots, x_k, i) = 0]$ for the case when there is no $i \le y$ with $f(x_1, \ldots, x_k, i) = 0$, namely by using 0, y or y + 1 as the corresponding value. It does not matter which of them is accepted. The function $\lambda xy.x \div y$ may be replaced with $\lambda xy.|x y|$.
- All functions from \mathcal{M}^2 are lower elementary in Skolem's sense, but it is not known whether the converse is true (it would be true if and only if \mathcal{M}^2 was closed under bounded summation).

The class \mathcal{M}^2

- **Definition.** The class \mathcal{M}^2 is the smallest class \mathcal{F} of total functions in \mathbb{N} such that \mathcal{F} contains the projection functions, the constant 0, the successor function, the multiplication function, as well as the function $\lambda xy.x y$, and \mathcal{F} is closed under substitution and bounded least number operator.
- **Remark.** There are different variants of the definition of $(\mu i \le y)[f(x_1, \ldots, x_k, i) = 0]$ for the case when there is no $i \le y$ with $f(x_1, \ldots, x_k, i) = 0$, namely by using 0, y or y + 1 as the corresponding value. It does not matter which of them is accepted. The function $\lambda xy.x y$ may be replaced with $\lambda xy.|x y|$.
- All functions from \mathcal{M}^2 are lower elementary in Skolem's sense, but it is not known whether the converse is true (it would be true if and only if \mathcal{M}^2 was closed under bounded summation).

The class \mathcal{M}^2

- **Definition.** The class \mathcal{M}^2 is the smallest class \mathcal{F} of total functions in \mathbb{N} such that \mathcal{F} contains the projection functions, the constant 0, the successor function, the multiplication function, as well as the function $\lambda xy.x y$, and \mathcal{F} is closed under substitution and bounded least number operator.
- **Remark.** There are different variants of the definition of $(\mu i \le y)[f(x_1, \ldots, x_k, i) = 0]$ for the case when there is no $i \le y$ with $f(x_1, \ldots, x_k, i) = 0$, namely by using 0, y or y + 1 as the corresponding value. It does not matter which of them is accepted. The function $\lambda xy.x y$ may be replaced with $\lambda xy.|x y|$.
- All functions from \mathcal{M}^2 are lower elementary in Skolem's sense, but it is not known whether the converse is true (it would be true if and only if \mathcal{M}^2 was closed under bounded summation).

The class \mathcal{M}^2 and the Δ_0 definability notion

- The class M² consists exactly of the total functions in N which are polynomially bounded and have Δ₀ definable graphs. Hence a relation in N is Δ₀ definable if and only if its characteristic function belongs to M².
- Theorem (Paris–Wilkie–Woods, Berarducci–D'Aquino). If the graph of a function f : N^{k+1} → N is Δ₀ definable, then so are the graphs of the functions

$$g(x_1,...,x_k,y) = \sum_{i \le \log_2(y+1)} f(x_1,...,x_k,i),$$

$$h(x_1,...,x_k,y) = \prod_{i \le y} f(x_1,...,x_k,i).$$

• Corollary. If $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is in \mathcal{M}^2 , and g, h are as above, then $g \in \mathcal{M}^2$ and $\lambda x_1 \dots x_k yz \dots (h(x_1, \dots, x_k, y), z) \in \mathcal{M}^2$.

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

The class \mathcal{M}^2 and the Δ_0 definability notion

- The class M² consists exactly of the total functions in N which are polynomially bounded and have Δ₀ definable graphs. Hence a relation in N is Δ₀ definable if and only if its characteristic function belongs to M².
- **Theorem** (*Paris–Wilkie–Woods, Berarducci–D'Aquino*). If the graph of a function $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is Δ_0 definable, then so are the graphs of the functions

$$g(x_1,\ldots,x_k,y) = \sum_{i \le \log_2(y+1)} f(x_1,\ldots,x_k,i),$$

$$h(x_1,\ldots,x_k,y) = \prod_{i \le y} f(x_1,\ldots,x_k,i).$$

• **Corollary.** If $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is in \mathcal{M}^2 , and g, h are as above, then $g \in \mathcal{M}^2$ and $\lambda x_1 \dots x_k yz \dots (h(x_1, \dots, x_k, y), z) \in \mathcal{M}^2$.

The class \mathcal{M}^2 and the Δ_0 definability notion

- The class M² consists exactly of the total functions in N which are polynomially bounded and have Δ₀ definable graphs. Hence a relation in N is Δ₀ definable if and only if its characteristic function belongs to M².
- **Theorem** (*Paris–Wilkie–Woods, Berarducci–D'Aquino*). If the graph of a function $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is Δ_0 definable, then so are the graphs of the functions

$$g(x_1,...,x_k,y) = \sum_{i \le \log_2(y+1)} f(x_1,...,x_k,i),$$

$$h(x_1,...,x_k,y) = \prod_{i \le y} f(x_1,...,x_k,i).$$

• Corollary. If $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is in \mathcal{M}^2 , and g, h are as above, then $g \in \mathcal{M}^2$ and $\lambda x_1 \dots x_k yz \dots \min(h(x_1, \dots, x_k, y), z) \in \mathcal{M}^2$. • **Definition.** A sequence $r_0, r_1, r_2, ...$ of rational numbers is called *recursive* if there exist recursive functions f, g and h such that

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots$$

- **Definition.** A real number α is called *computable* if there exists a recursive sequence r_0, r_1, r_2, \ldots of rational numbers such that $|r_n \alpha| \le 2^{-n}$, $n = 0, 1, 2, \ldots$
- **Remark.** A definition with $|r_n \alpha| \le (n+1)^{-1}$ instead of $|r_n \alpha| \le 2^{-n}$ would be equivalent to the above one, since $2^{-n} \le (n+1)^{-1}$, and for any recursive sequence r_0, r_1, r_2, \ldots of rational numbers the sequence r'_0, r'_1, r'_2, \ldots , defined by $r'_n = r_{2^n-1}$, is also recursive.

• **Definition.** A sequence $r_0, r_1, r_2, ...$ of rational numbers is called *recursive* if there exist recursive functions f, g and h such that

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots$$

- **Definition.** A real number α is called *computable* if there exists a recursive sequence r_0, r_1, r_2, \ldots of rational numbers such that $|r_n \alpha| \le 2^{-n}$, $n = 0, 1, 2, \ldots$
- **Remark.** A definition with $|r_n \alpha| \le (n+1)^{-1}$ instead of $|r_n \alpha| \le 2^{-n}$ would be equivalent to the above one, since $2^{-n} \le (n+1)^{-1}$, and for any recursive sequence r_0, r_1, r_2, \ldots of rational numbers the sequence r'_0, r'_1, r'_2, \ldots , defined by $r'_n = r_{2^n-1}$, is also recursive.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

• **Definition.** A sequence $r_0, r_1, r_2, ...$ of rational numbers is called *recursive* if there exist recursive functions f, g and h such that

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots$$

- **Definition.** A real number α is called *computable* if there exists a recursive sequence r_0, r_1, r_2, \ldots of rational numbers such that $|r_n \alpha| \le 2^{-n}$, $n = 0, 1, 2, \ldots$
- **Remark.** A definition with $|r_n \alpha| \le (n+1)^{-1}$ instead of $|r_n \alpha| \le 2^{-n}$ would be equivalent to the above one, since $2^{-n} \le (n+1)^{-1}$, and for any recursive sequence r_0, r_1, r_2, \ldots of rational numbers the sequence r'_0, r'_1, r'_2, \ldots , defined by $r'_n = r_{2^n-1}$, is also recursive.

\mathcal{F} -computability of real numbers

- Definition. Let F be a class of total functions in the set of the natural numbers (for instance the class M²).
 - A sequence $r_0, r_1, r_2, ...$ of rational numbers is called an \mathcal{F} -sequence if there exist functions $f, g, h \in \mathcal{F}$ such that

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots$$

- A real number α is called \mathcal{F} -computable if there exists an \mathcal{F} -sequence r_0, r_1, r_2, \ldots of rational numbers such that $|r_n \alpha| \leq (n+1)^{-1}, n = 0, 1, 2, \ldots$ The set of the \mathcal{F} -computable real numbers will be denoted by $\mathbb{R}_{\mathcal{F}}$.
- **Remark.** In the case of $\mathcal{F} = \mathcal{M}^2$, a definition with $|r_n \alpha| \le 2^{-n}$ instead of $|r_n \alpha| \le (n+1)^{-1}$ would be not equivalent to the above one!

\mathcal{F} -computability of real numbers

- Definition. Let *F* be a class of total functions in the set of the natural numbers (for instance the class *M*²).
 - A sequence $r_0, r_1, r_2, ...$ of rational numbers is called an \mathcal{F} -sequence if there exist functions $f, g, h \in \mathcal{F}$ such that

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- A real number α is called \mathcal{F} -computable if there exists an \mathcal{F} -sequence r_0, r_1, r_2, \ldots of rational numbers such that $|r_n \alpha| \leq (n+1)^{-1}, n = 0, 1, 2, \ldots$ The set of the \mathcal{F} -computable real numbers will be denoted by $\mathbb{R}_{\mathcal{F}}$.
- **Remark.** In the case of $\mathcal{F} = \mathcal{M}^2$, a definition with $|r_n \alpha| \le 2^{-n}$ instead of $|r_n \alpha| \le (n+1)^{-1}$ would be not equivalent to the above one!

\mathcal{F} -computability of real numbers

- Definition. Let *F* be a class of total functions in the set of the natural numbers (for instance the class *M*²).
 - A sequence $r_0, r_1, r_2, ...$ of rational numbers is called an \mathcal{F} -sequence if there exist functions $f, g, h \in \mathcal{F}$ such that

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- A real number α is called \mathcal{F} -computable if there exists an \mathcal{F} -sequence r_0, r_1, r_2, \ldots of rational numbers such that $|r_n \alpha| \leq (n+1)^{-1}, n = 0, 1, 2, \ldots$ The set of the \mathcal{F} -computable real numbers will be denoted by $\mathbb{R}_{\mathcal{F}}$.
- **Remark.** In the case of $\mathcal{F} = \mathcal{M}^2$, a definition with $|r_n \alpha| \le 2^{-n}$ instead of $|r_n \alpha| \le (n+1)^{-1}$ would be not equivalent to the above one!

Proof of the statement in the last remark

Suppose $|r_n - \alpha| \le 2^{-n}$, n = 0, 1, 2, ..., where

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots,$$

 $f, g, h : \mathbb{N} \to \mathbb{N}$. Whenever $r_n \neq r_{n+1}$, then

$$3 \cdot 2^{-n-1} \ge |r_n - r_{n+1}| \ge \frac{1}{(h(n) + 1)(h(n+1) + 1)},$$

and therefore $3(h(n) + 1)(h(n + 1) + 1) \ge 2^{n+1}$. With a function $h \in \mathcal{M}^2$, the above inequality will be violated for all sufficiently large n, hence we will have $r_n = r_{n+1}$ for all such n, and α must be a rational number. On the other hand, there are irrational numbers (e.g. $\sqrt{2}$) that are \mathcal{M}^2 -computable in the sense of the definition with $|r_n - \alpha| \le (n+1)^{-1}$ (we have $|r_n - \sqrt{2}| < (n+1)^{-1}$ with $r_n = k_n/(n+1)$, where $k_n = \min\{k \in \mathbb{N} | k^2 > 2(n+1)^2\}$)

Proof of the statement in the last remark

Suppose $|r_n - \alpha| \le 2^{-n}$, n = 0, 1, 2, ..., where

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots,$$

 $f, g, h : \mathbb{N} \to \mathbb{N}$. Whenever $r_n \neq r_{n+1}$, then

$$3 \cdot 2^{-n-1} \ge |r_n - r_{n+1}| \ge \frac{1}{(h(n) + 1)(h(n+1) + 1)},$$

and therefore $3(h(n) + 1)(h(n + 1) + 1) \ge 2^{n+1}$. With a function $h \in \mathcal{M}^2$, the above inequality will be violated for all sufficiently large *n*, hence we will have $r_n = r_{n+1}$ for all such *n*, and α must be a rational number. On the other hand, there are irrational numbers (e.g. $\sqrt{2}$) that are \mathcal{M}^2 -computable in the sense of the definition with $|r_n - \alpha| \le (n+1)^{-1}$ (we have $|r_n - \sqrt{2}| < (n+1)^{-1}$ with $r_n = k_n/(n+1)$, where $k_n = \min\{k \in \mathbb{N} | k^2 > 2(n+1)^2\}$)

Proof of the statement in the last remark

Suppose $|r_n - \alpha| \le 2^{-n}$, n = 0, 1, 2, ..., where

$$r_n = \frac{f(n) - g(n)}{h(n) + 1}, \quad n = 0, 1, 2, \dots,$$

 $f, g, h : \mathbb{N} \to \mathbb{N}$. Whenever $r_n \neq r_{n+1}$, then

$$3 \cdot 2^{-n-1} \ge |r_n - r_{n+1}| \ge \frac{1}{(h(n) + 1)(h(n+1) + 1)},$$

and therefore $3(h(n) + 1)(h(n+1) + 1) \ge 2^{n+1}$. With a function $h \in \mathcal{M}^2$, the above inequality will be violated for all sufficiently large *n*, hence we will have $r_n = r_{n+1}$ for all such *n*, and α must be a rational number. On the other hand, there are irrational numbers (e.g. $\sqrt{2}$) that are \mathcal{M}^2 -computable in the sense of the definition with $|r_n - \alpha| \le (n+1)^{-1}$ (we have $|r_n - \sqrt{2}| < (n+1)^{-1}$ with $r_n = k_n/(n+1)$, where $k_n = \min\{k \in \mathbb{N} \mid k^2 > 2(n+1)^2\}$)

• Theorem. Let \mathcal{F} be a class of total functions in \mathbb{N} . Then:

- If *F* contains the successor, projection, multiplication functions, as well as the function λxy.|x y|, and *F* is closed under substitution, then ℝ_F is a field.
- If \mathcal{F} satisfies the above assumptions, and, in addition, \mathcal{F} is closed under the bounded least number operator, then $\mathbb{R}_{\mathcal{F}}$ is a real closed field.

(日) (문) (문) (문) (문)

• Corollary. $\mathbb{R}_{\mathcal{M}^2}$ is a real closed field.

- **Theorem.** Let \mathcal{F} be a class of total functions in \mathbb{N} . Then:
 - If \mathcal{F} contains the successor, projection, multiplication functions, as well as the function $\lambda xy.|x y|$, and \mathcal{F} is closed under substitution, then $\mathbb{R}_{\mathcal{F}}$ is a field.
 - If *F* satisfies the above assumptions, and, in addition, *F* is closed under the bounded least number operator, then ℝ_F is a real closed field.

• Corollary. $\mathbb{R}_{\mathcal{M}^2}$ is a real closed field.

- **Theorem.** Let \mathcal{F} be a class of total functions in \mathbb{N} . Then:
 - If \mathcal{F} contains the successor, projection, multiplication functions, as well as the function $\lambda xy.|x y|$, and \mathcal{F} is closed under substitution, then $\mathbb{R}_{\mathcal{F}}$ is a field.
 - If \mathcal{F} satisfies the above assumptions, and, in addition, \mathcal{F} is closed under the bounded least number operator, then $\mathbb{R}_{\mathcal{F}}$ is a real closed field.

• Corollary. $\mathbb{R}_{\mathcal{M}^2}$ is a real closed field.

¹The same sequences were used before in a paper of the first author for proving that *e* and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^2}$, where \mathcal{E}^2 is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^2 -computability of their limits was observed by the second author in June 2008.

¹The same sequences were used before in a paper of the first author for proving that *e* and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^2}$, where \mathcal{E}^2 is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^2 -computability of their limits was observed by the second author in June 2008.

¹The same sequences were used before in a paper of the first author for proving that *e* and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^2}$, where \mathcal{E}^2 is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^2 -computability of their limits was observed by the second author in June 2008.

¹The same sequences were used before in a paper of the first author for proving that *e* and Liouville's number belong to $\mathbb{R}_{\mathcal{E}^2}$, where \mathcal{E}^2 is the second Grzegorczyk class. The possibility to use these sequences for proving the \mathcal{M}^2 -computability of their limits was observed by the second author in June 2008.

For any $k \in \mathbb{N}$, let $s_k = 1 + 1/1! + 1/2! + \dots + 1/k!$. Then we have $|s_k - e| < \frac{1}{k!k}$ for $k = 1, 2, 3, \dots$ Let $k_n = \min\{k \mid k!k \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - e| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence r_0, r_1, r_2, \dots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = k_n!s_{k_n}/k_n!$ and proving that the functions $\lambda n.k_n!s_{k_n}$ and $\lambda n.k_n!$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since the equality $m = k_n!$ is equivalent to

 $(\exists k \leq m)(m = k! \& mk \geq n+1 \& m(k-1) \leq nk),$

this condition implies $m \le 2n + 1$, and the graph of the factorial function is Δ_0 definable. The statement that $\lambda n.k_n!s_{k_n} \in \mathcal{M}^2$ follows from the fact that $2^{k_n} \le 2k_n! \le 4n + 2$, hence $k_n \le \log_2(4n + 2)$ and therefore

$$k_n!s_{k_n} = \sum_{i \leq \log_2(4n+2)} \lfloor k_n! / \min(i!, k_n! + 1) \rfloor.$$

For any $k \in \mathbb{N}$, let $s_k = 1 + 1/1! + 1/2! + \dots + 1/k!$. Then we have $|s_k - e| < \frac{1}{k!k}$ for $k = 1, 2, 3, \dots$ Let $k_n = \min\{k \mid k!k \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - e| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence r_0, r_1, r_2, \dots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = k_n!s_{k_n}/k_n!$ and proving that the functions $\lambda n.k_n!s_{k_n}$ and $\lambda n.k_n!$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since the equality $m = k_n!$ is equivalent to

 $(\exists k \leq m)(m = k! \& mk \geq n+1 \& m(k-1) \leq nk),$

this condition implies $m \le 2n + 1$, and the graph of the factorial function is Δ_0 definable. The statement that $\lambda n.k_n!s_{k_n} \in \mathcal{M}^2$ follows from the fact that $2^{k_n} \le 2k_n! \le 4n + 2$, hence $k_n \le \log_2(4n + 2)$ and therefore

$$k_n!s_{k_n} = \sum_{i \leq \log_2(4n+2)} \lfloor k_n! / \min(i!, k_n! + 1) \rfloor.$$

For any $k \in \mathbb{N}$, let $s_k = 1 + 1/1! + 1/2! + \dots + 1/k!$. Then we have $|s_k - e| < \frac{1}{k!k}$ for $k = 1, 2, 3, \dots$ Let $k_n = \min\{k \mid k!k \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - e| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence r_0, r_1, r_2, \dots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = k_n!s_{k_n}/k_n!$ and proving that the functions $\lambda n.k_n!s_{k_n}$ and $\lambda n.k_n!$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since the equality $m = k_n!$ is equivalent to

 $(\exists k \leq m)(m = k! \& mk \geq n + 1 \& m(k - 1) \leq nk),$

this condition implies $m \le 2n + 1$, and the graph of the factorial function is Δ_0 definable. The statement that $\lambda n.k_n!s_{k_n} \in \mathcal{M}^2$ follows from the fact that $2^{k_n} \le 2k_n! \le 4n + 2$, hence $k_n \le \log_2(4n + 2)$ and therefore

$$k_n!s_{k_n} = \sum_{i \leq \log_2(4n+2)} \lfloor k_n! / \min(i!, k_n! + 1) \rfloor.$$

For any $k \in \mathbb{N}$, let $s_k = 1 + 1/1! + 1/2! + \dots + 1/k!$. Then we have $|s_k - e| < \frac{1}{k!k}$ for $k = 1, 2, 3, \dots$ Let $k_n = \min\{k \mid k!k \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - e| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that the sequence r_0, r_1, r_2, \dots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = k_n!s_{k_n}/k_n!$ and proving that the functions $\lambda n.k_n!s_{k_n}$ and $\lambda n.k_n!$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since the equality $m = k_n!$ is equivalent to

 $(\exists k \leq m)(m = k! \& mk \geq n + 1 \& m(k - 1) \leq nk),$

this condition implies $m \le 2n + 1$, and the graph of the factorial function is Δ_0 definable. The statement that $\lambda n.k_n!s_{k_n} \in \mathcal{M}^2$ follows from the fact that $2^{k_n} \le 2k_n! \le 4n + 2$, hence $k_n \le \log_2(4n + 2)$ and therefore

$$k_n! s_{k_n} = \sum_{i \le \log_2(4n+2)} \lfloor k_n! / \min(i!, k_n! + 1) \rfloor.$$

Liouville's number L is the infinite sum $10^{-1!} + 10^{-2!} + 10^{-3!} + \cdots$ Let $s_k = 10^{-1!} + 10^{-2!} + \ldots + 10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $|s_k - L| < \frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid 10^{k!k} \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - L| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence r_0, r_1, r_2, \ldots will be shown to be an \mathcal{M}^2 -sequence by proving that the functions $\lambda n.10^{k_n!} s_{k_n}$ and $\lambda n.10^{k_n!}$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since $m = 10^{k_n!}$ is equivalent to

$$(n = 0 \& m = 1) \lor (\exists i, j \le n) (j = i! \& m = 10^{j(i+1)} \& (\exists l \le n) (l = 10^{ji}) \& (\forall l \le n) (l \ne 10^{j(i+1)^2})),$$

this condition implies $m \le n^2 + 9$, and the graphs of the factorial function and of the function $\lambda x.10^x$ are Δ_0 definable. To prove that $\lambda n.10^{k_n!} s_{k_n} \in \mathcal{M}^2$, we show that $k_n \le \log_2(n+2)$ and hence

$$10^{k_n!} s_{k_n} = \min(n, 1) \sum_{1 \le i \le \log_2(n+2)} \left[10^{k_n!} / \min(10^{i!}, 10^{k_n!} + 1) \right].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Liouville's number L is the infinite sum $10^{-1!} + 10^{-2!} + 10^{-3!} + \cdots$ Let $s_k = 10^{-1!} + 10^{-2!} + \ldots + 10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $|s_k - L| < \frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid 10^{k!k} \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - L| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence r_0, r_1, r_2, \ldots will be shown to be an \mathcal{M}^2 -sequence by proving that the functions $\lambda n.10^{k_n!} s_{k_n}$ and $\lambda n.10^{k_n!}$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since $m = 10^{k_n!}$ is equivalent to

 $(n = 0 \& m = 1) \lor (\exists i, j \le n) (j = i! \& m = 10^{j(i+1)} \& (\exists l \le n) (l = 10^{ji}) \& (\forall l \le n) (l \ne 10^{j(i+1)^2})),$

this condition implies $m \le n^2 + 9$, and the graphs of the factorial function and of the function $\lambda x.10^x$ are Δ_0 definable. To prove that $\lambda n.10^{k_n!} s_{k_n} \in \mathcal{M}^2$, we show that $k_n \le \log_2(n+2)$ and hence

$$10^{k_n!} s_{k_n} = \min(n, 1) \sum_{1 \le i \le \log_2(n+2)} \left[10^{k_n!} / \min(10^{i!}, 10^{k_n!} + 1) \right].$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Liouville's number L is the infinite sum $10^{-1!} + 10^{-2!} + 10^{-3!} + \cdots$ Let $s_k = 10^{-1!} + 10^{-2!} + \ldots + 10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $|s_k - L| < \frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid 10^{k!k} \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - L| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence r_0, r_1, r_2, \ldots will be shown to be an \mathcal{M}^2 -sequence by proving that the functions $\lambda n \cdot 10^{k_n!} s_{k_n}$ and $\lambda n \cdot 10^{k_n!}$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since $m = 10^{k_n!}$ is equivalent to

$$(n = 0 \& m = 1) \lor (\exists i, j \le n) (j = i! \& m = 10^{j(i+1)} \& (\exists l \le n) (l = 10^{ji}) \& (\forall l \le n) (l \ne 10^{j(i+1)^2})),$$

this condition implies $m \le n^2 + 9$, and the graphs of the factorial function and of the function $\lambda x.10^x$ are Δ_0 definable. To prove that $\lambda n.10^{k_n!} s_{k_n} \in \mathcal{M}^2$, we show that $k_n \le \log_2(n+2)$ and hence

 $10^{k_n!} s_{k_n} = \min(n, 1) \sum_{1 \le i \le \log_2(n+2)} \left\lfloor 10^{k_n!} / \min(10^{i!}, 10^{k_n!} + 1) \right\rfloor.$

Liouville's number L is the infinite sum $10^{-1!} + 10^{-2!} + 10^{-3!} + \cdots$ Let $s_k = 10^{-1!} + 10^{-2!} + \ldots + 10^{-k!}$ for any $k \in \mathbb{N}$. Then we have $|s_k - L| < \frac{1}{10^{k!k}}$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid 10^{k!k} \ge n+1\}$, $r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - L| < (n+1)^{-1}$ for all $n \in \mathbb{N}$. The sequence r_0, r_1, r_2, \ldots will be shown to be an \mathcal{M}^2 -sequence by proving that the functions $\lambda n \cdot 10^{k_n!} s_{k_n}$ and $\lambda n \cdot 10^{k_n!}$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since $m = 10^{k_n!}$ is equivalent to

$$(n = 0 \& m = 1) \lor (\exists i, j \le n) (j = i! \& m = 10^{j(i+1)} \& (\exists l \le n) (l = 10^{ji}) \& (\forall l \le n) (l \ne 10^{j(i+1)^2})),$$

this condition implies $m \le n^2 + 9$, and the graphs of the factorial function and of the function $\lambda x.10^x$ are Δ_0 definable. To prove that $\lambda n.10^{k_n!} s_{k_n} \in \mathcal{M}^2$, we show that $k_n \le \log_2(n+2)$ and hence

$$10^{k_n!} s_{k_n} = \min(n, 1) \sum_{1 \le i \le \log_2(n+2)} \left\lfloor 10^{k_n!} / \min(10^{i!}, 10^{k_n!} + 1) \right\rfloor.$$

- **Theorem.** Let $\alpha = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \cdots$, where $\varphi : \mathbb{N} \to \mathbb{N} \setminus \{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_0 definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^2}$.
- *Proof.* Let $s_k = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \dots + 1/\varphi(k)$ for

$$\varphi(k_n)s_{k_n} = \sum_{i \le \log_2(2n+\varphi(0))} \left[\varphi(k_n) / \min(\varphi(i), \varphi(k_n) + 1) \right].$$

- **Theorem.** Let $\alpha = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \cdots$, where $\varphi : \mathbb{N} \to \mathbb{N} \setminus \{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_0 definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^2}$.
- **Proof.** Let $s_k = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \dots + 1/\varphi(k)$ for any $k \in \mathbb{N}$. Then $|s_k - \alpha| \leq 2/\varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid \varphi(k+1) \ge 2n+2\}, r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - \alpha| \leq (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that

$$\varphi(k_n)s_{k_n} = \sum_{i \le \log_2(2n+\varphi(0))} \left[\varphi(k_n) / \min(\varphi(i), \varphi(k_n) + 1) \right].$$

- **Theorem.** Let $\alpha = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \cdots$, where $\varphi : \mathbb{N} \to \mathbb{N} \setminus \{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_0 definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^2}$.
- **Proof.** Let $s_k = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \dots + 1/\varphi(k)$ for any $k \in \mathbb{N}$. Then $|s_k - \alpha| \leq 2/\varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid \varphi(k+1) \ge 2n+2\}, r_n = s_{k_n} \text{ for any } n \in \mathbb{N}.$ Then $|r_n - \alpha| \leq (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that r_0, r_1, r_2, \ldots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = \varphi(k_n) s_{k_n} / \varphi(k_n)$ and proving that the functions $\lambda n.\varphi(k_n)s_{k_n}$ and $\lambda n.\varphi(k_n)$ belong to \mathcal{M}^2 . The

$$\varphi(k_n)s_{k_n} = \sum_{i \le \log_2(2n+\varphi(0))} \left[\varphi(k_n) / \min(\varphi(i), \varphi(k_n) + 1) \right].$$

- **Theorem.** Let $\alpha = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \cdots$, where $\varphi : \mathbb{N} \to \mathbb{N} \setminus \{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_0 definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^2}$.
- **Proof.** Let $s_k = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \dots + 1/\varphi(k)$ for any $k \in \mathbb{N}$. Then $|s_k - \alpha| \leq 2/\varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid \varphi(k+1) \ge 2n+2\}, r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - \alpha| \leq (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that r_0, r_1, r_2, \ldots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = \varphi(k_n) s_{k_n} / \varphi(k_n)$ and proving that the functions $\lambda n.\varphi(k_n)s_{k_n}$ and $\lambda n.\varphi(k_n)$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since $m = \varphi(k_n)$ is equivalent to $(\exists k \leq m)(m = \varphi(k)\&(k = 0 \lor m \leq 2n + 1)\&(\forall l \leq m)$ $(2n+1)(l \neq \varphi(k+1)))$, and this condition implies $m \leq 2n + \varphi(0)$. To prove that $\lambda n \cdot \varphi(k_n) s_{k_n} \in \mathcal{M}^2$, we note that

$$\varphi(k_n)s_{k_n} = \sum_{i \le \log_2(2n+\varphi(0))} \left[\varphi(k_n) / \min(\varphi(i), \varphi(k_n) + 1) \right].$$

A partial generalization

- **Theorem.** Let $\alpha = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \cdots$, where $\varphi : \mathbb{N} \to \mathbb{N} \setminus \{0\}, \varphi(i)$ is a proper divisor of $\varphi(i+1)$ for any $i \in \mathbb{N}$, and the graph of φ is Δ_0 definable. Then $\alpha \in \mathbb{R}_{\mathcal{M}^2}$.
- **Proof.** Let $s_k = 1/\varphi(0) + 1/\varphi(1) + 1/\varphi(2) + \dots + 1/\varphi(k)$ for any $k \in \mathbb{N}$. Then $|s_k - \alpha| \leq 2/\varphi(k+1)$ for all $k \in \mathbb{N}$. Let $k_n = \min\{k \mid \varphi(k+1) \ge 2n+2\}, r_n = s_{k_n}$ for any $n \in \mathbb{N}$. Then $|r_n - \alpha| \leq (n+1)^{-1}$ for all $n \in \mathbb{N}$. We will show that r_0, r_1, r_2, \ldots is an \mathcal{M}^2 -sequence. This will be done by using the equality $r_n = \varphi(k_n) s_{k_n} / \varphi(k_n)$ and proving that the functions $\lambda n.\varphi(k_n)s_{k_n}$ and $\lambda n.\varphi(k_n)$ belong to \mathcal{M}^2 . The second of them belongs to \mathcal{M}^2 , since $m = \varphi(k_n)$ is equivalent to $(\exists k \leq m)(m = \varphi(k)\&(k = 0 \lor m \leq 2n + 1)\&(\forall l \leq m)$ $(2n+1)(l \neq \varphi(k+1)))$, and this condition implies $m \leq 2n + \varphi(0)$. To prove that $\lambda n \cdot \varphi(k_n) s_{k_n} \in \mathcal{M}^2$, we note that $k_n \leq \log_2(2n + \varphi(0))$ and hence

$$\varphi(k_n)s_{k_n} = \sum_{i \le \log_2(2n+\varphi(0))} \left[\varphi(k_n) / \min(\varphi(i), \varphi(k_n) + 1) \right].$$

\mathcal{M}^2 -computable real-valued function with natural arguments

Definition. A function θ: N¹ → ℝ is called M²-computable if there exist l + 1-argument functions f, g, h ∈ M² such that

$$\frac{f(x_1,...,x_l,n) - g(x_1,...,x_l,n)}{h(x_1,...,x_l,n) + 1} - \theta(x_1,...,x_l) \le \frac{1}{n+1}$$

for all x_1, \ldots, x_l, n in \mathbb{N} .

• All values of an \mathcal{M}^2 -computable real-valued function with natural arguments belong to $\mathbb{R}_{\mathcal{M}^2}$ (the 0-argument \mathcal{M}^2 -computable real-valued functions can be identified with elements of $\mathbb{R}_{\mathcal{M}^2}$). Any substitution of functions from the class \mathcal{M}^2 into an \mathcal{M}^2 -computable real-valued function with natural arguments produces again a function of this kind.

\mathcal{M}^2 -computable real-valued function with natural arguments

Definition. A function θ: N¹ → ℝ is called M²-computable if there exist l + 1-argument functions f, g, h ∈ M² such that

$$\frac{f(x_1,...,x_l,n) - g(x_1,...,x_l,n)}{h(x_1,...,x_l,n) + 1} - \theta(x_1,...,x_l) \le \frac{1}{n+1}$$

for all x_1, \ldots, x_l, n in \mathbb{N} .

• All values of an \mathcal{M}^2 -computable real-valued function with natural arguments belong to $\mathbb{R}_{\mathcal{M}^2}$ (the 0-argument \mathcal{M}^2 -computable real-valued functions can be identified with elements of $\mathbb{R}_{\mathcal{M}^2}$). Any substitution of functions from the class \mathcal{M}^2 into an \mathcal{M}^2 -computable real-valued function with natural arguments produces again a function of this kind.

Grzegorczyk-type approximation

• Lemma. Let $\theta : \mathbb{N}^{l} \to \mathbb{R}$ be an \mathcal{M}^{2} -computable function. Then there exist l + 1-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$\left|\frac{F(x_1,\ldots,x_l,n)-G(x_1,\ldots,x_l,n)}{n+1}-\theta(x_1,\ldots,x_l)\right|\leq \frac{1}{n+1}$$

for all x_1, \ldots, x_l, n in \mathbb{N} .

• *Proof.* There exists a two-argument function A in \mathcal{M}^2 such that $\left|A(i,j) - \frac{i}{j+1}\right| \leq \frac{1}{2}$ for all $i, j \in \mathbb{N}$. Let f, g, h be such as in the definition in the previous frame. We set

 $\begin{aligned} F(\overline{x},n) &= A((n+1)(f(\overline{x},2n+1) \div g(\overline{x},2n+1)), h(\overline{x},2n+1)), \\ G(\overline{x},n) &= A((n+1)(g(\overline{x},2n+1) \div f(\overline{x},2n+1)), h(\overline{x},2n+1)), \end{aligned}$

and we use the fact that

$$\frac{F(\overline{x},n) - G(\overline{x},n)}{n+1} - \frac{f(\overline{x},2n+1) - g(\overline{x},2n+1)}{h(\overline{x},2n+1) + 1} \le \frac{1}{2n+2}.$$

Grzegorczyk-type approximation

• Lemma. Let $\theta : \mathbb{N}^{l} \to \mathbb{R}$ be an \mathcal{M}^{2} -computable function. Then there exist l + 1-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$\left|\frac{F(x_1,...,x_l,n) - G(x_1,...,x_l,n)}{n+1} - \theta(x_1,...,x_l)\right| \le \frac{1}{n+1}$$

for all x_1, \ldots, x_l, n in \mathbb{N} .

• *Proof.* There exists a two-argument function A in \mathcal{M}^2 such that $\left|A(i,j) - \frac{i}{j+1}\right| \leq \frac{1}{2}$ for all $i, j \in \mathbb{N}$. Let f, g, h be such as in the definition in the previous frame. We set

$$\begin{split} F(\overline{x},n) &= A((n+1)(f(\overline{x},2n+1) \div g(\overline{x},2n+1)), h(\overline{x},2n+1)), \\ G(\overline{x},n) &= A((n+1)(g(\overline{x},2n+1) \div f(\overline{x},2n+1)), h(\overline{x},2n+1)), \end{split}$$

and we use the fact that

$$\frac{F(\overline{x},n) - G(\overline{x},n)}{n+1} - \frac{f(\overline{x},2n+1) - g(\overline{x},2n+1)}{h(\overline{x},2n+1) + 1} \le \frac{1}{2n+2}.$$

Grzegorczyk-type approximation

• Lemma. Let $\theta : \mathbb{N}^{l} \to \mathbb{R}$ be an \mathcal{M}^{2} -computable function. Then there exist l + 1-argument functions $F, G \in \mathcal{M}^{2}$ such that

$$\left|\frac{F(x_1,\ldots,x_l,n)-G(x_1,\ldots,x_l,n)}{n+1}-\theta(x_1,\ldots,x_l)\right|\leq \frac{1}{n+1}$$

for all x_1, \ldots, x_l, n in \mathbb{N} .

• *Proof.* There exists a two-argument function A in \mathcal{M}^2 such that $\left|A(i,j) - \frac{i}{j+1}\right| \leq \frac{1}{2}$ for all $i, j \in \mathbb{N}$. Let f, g, h be such as in the definition in the previous frame. We set

 $\begin{aligned} F(\overline{x},n) &= A((n+1)(f(\overline{x},2n+1) \div g(\overline{x},2n+1)), h(\overline{x},2n+1)), \\ G(\overline{x},n) &= A((n+1)(g(\overline{x},2n+1) \div f(\overline{x},2n+1)), h(\overline{x},2n+1)), \end{aligned}$

and we use the fact that

$$\frac{F(\overline{x},n) - G(\overline{x},n)}{n+1} - \frac{f(\overline{x},2n+1) - g(\overline{x},2n+1)}{h(\overline{x},2n+1) + 1} \le \frac{1}{2n+2}.$$

Arithmetical operations on M^2 -computable real-valued functions of natural arguments

- Lemma. Let $\theta_i : \mathbb{N}^l \to \mathbb{R}$, i = 1, 2, be \mathcal{M}^2 -computable functions. Then so are also $\theta_1 + \theta_2$, $\theta_1 \theta_2$ and $\theta_1 \theta_2$.
- *Proof.* Let $F_1, G_1, F_2, G_2 : \mathbb{N}^{l+1} \to \mathbb{N}$ belong to \mathcal{M}^2 , and let

$$\left|\frac{F_i(\overline{x},n)-G_i(\overline{x},n)}{n+1}-\theta_i(\overline{x})\right| \leq \frac{1}{n+1}, \ i=1,2.$$

for all \overline{x} in \mathbb{N}' and all n in \mathbb{N} . To prove the statement about $\theta_1 \theta_2$ (the other cases are easier), we define $k, f, g : \mathbb{N}^{l+1} \to \mathbb{N}$ by

 $\begin{aligned} k(\overline{x},n) &= \left(|F_1(\overline{x},0) - G_1(\overline{x},0)| + |F_2(\overline{x},0) - G_2(\overline{x},0)| + 3\right)(n+1) - 1, \\ f(\overline{x},n) &= F_1(\overline{x},k(\overline{x},n))F_2(\overline{x},k(\overline{x},n)) + G_1(\overline{x},k(\overline{x},n))G_2(\overline{x},k(\overline{x},n)), \\ g(\overline{x},n) &= F_1(\overline{x},k(\overline{x},n))G_2(\overline{x},k(\overline{x},n)) + G_1(\overline{x},k(\overline{x},n))F_2(\overline{x},k(\overline{x},n)). \end{aligned}$ Then $k, f, g \in \mathcal{M}^2$, and, for all \overline{x} in \mathbb{N}^l and all n in \mathbb{N} , we have $\left| \frac{f(\overline{x},n) - g(\overline{x},n)}{(k(\overline{x},n)+1)^2} - \theta_1(\overline{x})\theta_2(\overline{x}) \right| \leq \frac{1}{n+1}. \end{aligned}$

Arithmetical operations on M^2 -computable real-valued functions of natural arguments

- Lemma. Let $\theta_i : \mathbb{N}^l \to \mathbb{R}$, i = 1, 2, be \mathcal{M}^2 -computable functions. Then so are also $\theta_1 + \theta_2$, $\theta_1 \theta_2$ and $\theta_1 \theta_2$.
- *Proof.* Let $F_1, G_1, F_2, G_2 : \mathbb{N}^{l+1} \to \mathbb{N}$ belong to \mathcal{M}^2 , and let

$$\frac{F_i(\overline{x},n)-G_i(\overline{x},n)}{n+1}-\theta_i(\overline{x})\right|\leq \frac{1}{n+1},\ i=1,2,$$

for all $\overline{\mathbf{x}}$ in \mathbb{N}^{l} and all n in \mathbb{N} . To prove the statement about $\theta_{1}\theta_{2}$ (the other cases are easier), we define $k, f, g: \mathbb{N}^{l+1} \to \mathbb{N}$ by

 $\begin{aligned} k(\overline{x},n) &= \left(|F_1(\overline{x},0) - G_1(\overline{x},0)| + |F_2(\overline{x},0) - G_2(\overline{x},0)| + 3\right)(n+1) - 1, \\ f(\overline{x},n) &= F_1(\overline{x},k(\overline{x},n))F_2(\overline{x},k(\overline{x},n)) + G_1(\overline{x},k(\overline{x},n))G_2(\overline{x},k(\overline{x},n)), \\ g(\overline{x},n) &= F_1(\overline{x},k(\overline{x},n))G_2(\overline{x},k(\overline{x},n)) + G_1(\overline{x},k(\overline{x},n))F_2(\overline{x},k(\overline{x},n)). \end{aligned}$ Then $k, f, g \in \mathcal{M}^2$, and, for all \overline{x} in \mathbb{N}^l and all n in \mathbb{N} , we have $\left| \frac{f(\overline{x},n) - g(\overline{x},n)}{(k(\overline{x},n)+1)^2} - \theta_1(\overline{x})\theta_2(\overline{x}) \right| \leq \frac{1}{n+1}. \end{aligned}$

Arithmetical operations on M^2 -computable real-valued functions of natural arguments

- Lemma. Let $\theta_i : \mathbb{N}^l \to \mathbb{R}$, i = 1, 2, be \mathcal{M}^2 -computable functions. Then so are also $\theta_1 + \theta_2$, $\theta_1 \theta_2$ and $\theta_1 \theta_2$.
- *Proof.* Let $F_1, G_1, F_2, G_2 : \mathbb{N}^{l+1} \to \mathbb{N}$ belong to \mathcal{M}^2 , and let

$$\frac{F_i(\overline{x},n)-G_i(\overline{x},n)}{n+1}-\theta_i(\overline{x})\right|\leq \frac{1}{n+1},\ i=1,2,$$

for all \overline{x} in \mathbb{N}^{l} and all *n* in \mathbb{N} . To prove the statement about $\theta_{1}\theta_{2}$ (the other cases are easier), we define $k, f, g: \mathbb{N}^{l+1} \to \mathbb{N}$ by

$$\begin{split} &k(\overline{x},n) = (|F_1(\overline{x},0) - G_1(\overline{x},0)| + |F_2(\overline{x},0) - G_2(\overline{x},0)| + 3)(n+1) - 1, \\ &f(\overline{x},n) = F_1(\overline{x},k(\overline{x},n))F_2(\overline{x},k(\overline{x},n)) + G_1(\overline{x},k(\overline{x},n))G_2(\overline{x},k(\overline{x},n)), \\ &g(\overline{x},n) = F_1(\overline{x},k(\overline{x},n))G_2(\overline{x},k(\overline{x},n)) + G_1(\overline{x},k(\overline{x},n))F_2(\overline{x},k(\overline{x},n)). \end{split}$$

Then $k, f, g \in \mathcal{M}^2$, and, for all \overline{x} in \mathbb{N}^l and all n in \mathbb{N} , we have

$$\frac{f(\overline{x},n) - g(\overline{x},n)}{(k(\overline{x},n) + 1)^2} - \theta_1(\overline{x})\theta_2(\overline{x}) \le \frac{1}{n+1}.$$

Logarithmically bounded summation

• Lemma (Georgiev, 2009). Let $\theta : \mathbb{N}^{k+1} \to \mathbb{R}$ be an \mathcal{M}^2 -computable function, and $\theta^{\Sigma} : \mathbb{N}^{k+1} \to \mathbb{R}$ be defined by $\theta^{\Sigma}(x_1, \dots, x_k, y) = \sum_{i \le \log_2(y+1)} \theta(x_1, \dots, x_k, i).$

Then θ^{Σ} is also \mathcal{M}^2 -computable.

• Proof. Let F, G be as in the first lemma with l = k + 1. If

$$\begin{split} h^{\Sigma}(\overline{x}, y, n) &= (n+1) \lfloor \log_2(y+1) \rfloor + n, \\ f^{\Sigma}(\overline{x}, y, n) &= \sum_{i \leq \log_2(y+1)} F(\overline{x}, i, h^{\Sigma}(\overline{x}, y, n)), \\ g^{\Sigma}(\overline{x}, y, n) &= \sum_{i \leq \log_2(y+1)} G(\overline{x}, i, h^{\Sigma}(\overline{x}, y, n)), \end{split}$$

then

$$\left|\frac{f^{\Sigma}(\overline{x}, y, n) - g^{\Sigma}(\overline{x}, y, n)}{h^{\Sigma}(\overline{x}, y, n) + 1} - \theta^{\Sigma}(\overline{x}, y)\right| \leq \frac{1}{n+1}.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Logarithmically bounded summation

• Lemma (Georgiev, 2009). Let $\theta : \mathbb{N}^{k+1} \to \mathbb{R}$ be an \mathcal{M}^2 -computable function, and $\theta^{\Sigma} : \mathbb{N}^{k+1} \to \mathbb{R}$ be defined by $\theta^{\Sigma}(x_1, \dots, x_k, y) = \sum_{i \le \log_2(y+1)} \theta(x_1, \dots, x_k, i).$

Then θ^{Σ} is also \mathcal{M}^2 -computable.

• *Proof.* Let F, G be as in the first lemma with l = k + 1. If

$$\begin{split} h^{\Sigma}(\overline{x}, y, n) &= (n+1) \lfloor \log_2(y+1) \rfloor + n, \\ f^{\Sigma}(\overline{x}, y, n) &= \sum_{i \leq \log_2(y+1)} F(\overline{x}, i, h^{\Sigma}(\overline{x}, y, n)), \\ g^{\Sigma}(\overline{x}, y, n) &= \sum_{i \leq \log_2(y+1)} G(\overline{x}, i, h^{\Sigma}(\overline{x}, y, n)), \end{split}$$

then

$$\left|\frac{f^{\Sigma}(\overline{x}, y, n) - g^{\Sigma}(\overline{x}, y, n)}{h^{\Sigma}(\overline{x}, y, n) + 1} - \theta^{\Sigma}(\overline{x}, y)\right| \leq \frac{1}{n+1}.$$

\mathcal{M}^2 -computability of sums of series

• Lemma (Georgiev, 2009). Let $\theta : \mathbb{N}^{k+1} \to \mathbb{R}$ be an \mathcal{M}^2 -computable function such that the series

$$\sum_{i=0}^{\infty} \theta(x_1,\ldots,x_k,i)$$

converges for all x_1, \ldots, x_k in \mathbb{N} , and $\sigma(x_1, \ldots, x_k)$ be its sum. Let there exist a k + 1-argument function $p \in \mathcal{M}^2$ such that

$$\left|\sum_{i>\log_2(y+1)}\theta(x_1,\ldots,x_k,i)\right|\leq \frac{1}{n+1}$$

for any natural numbers x_1, \ldots, x_k , n and $y = p(x_1, \ldots, x_k, n)$. Then the function σ is also \mathcal{M}^2 -computable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

 Proof. By the previous lemma and the definition of *M*²-computability of a real-valued function with natural arguments.

\mathcal{M}^2 -computability of sums of series

• Lemma (Georgiev, 2009). Let $\theta : \mathbb{N}^{k+1} \to \mathbb{R}$ be an \mathcal{M}^2 -computable function such that the series

$$\sum_{i=0}^{\infty} \theta(x_1,\ldots,x_k,i)$$

converges for all x_1, \ldots, x_k in \mathbb{N} , and $\sigma(x_1, \ldots, x_k)$ be its sum. Let there exist a k + 1-argument function $p \in \mathcal{M}^2$ such that

$$\left|\sum_{i>\log_2(y+1)}\theta(x_1,\ldots,x_k,i)\right|\leq \frac{1}{n+1}$$

for any natural numbers x_1, \ldots, x_k , n and $y = p(x_1, \ldots, x_k, n)$. Then the function σ is also \mathcal{M}^2 -computable.

 Proof. By the previous lemma and the definition of *M*²-computability of a real-valued function with natural arguments.

\mathcal{M}^2 -computability of π

Since $\pi = 4 \arctan 1$, it is sufficient to prove that $\arctan 1 \in \mathbb{R}_{\mathcal{M}^2}$. This will be done by using the equality

 $\arctan 1 = \arctan \frac{1}{2} + \arctan \frac{1}{3}$

and proving that $\arctan \frac{1}{m} \in \mathbb{R}_{\mathcal{M}^2}$ for any natural number m, greater than 1. Let $m \in \mathbb{N}$ and m > 1. Then we can apply the previous lemma to the expansion

$$\arctan \frac{1}{m} = \sum_{i=0}^{\infty} \theta(i),$$

where $\theta(i) = \frac{(-1)^{i}}{(2i+1)m^{2i+1}}$. The assumptions of the lemma are satisfied thanks to the inequalities

$$\frac{(i+1) \mod 2 - i \mod 2}{\min((2i+1)(m+2)^{2i+1}, n+1)} - \theta(i) \bigg| < \frac{1}{n+1},$$
$$\bigg| \sum_{i > \log_2(y+1)} \theta(i) \bigg| < \frac{1}{2(y+1)^2}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ●

\mathcal{M}^2 -computability of π

Since $\pi = 4 \arctan 1$, it is sufficient to prove that $\arctan 1 \in \mathbb{R}_{\mathcal{M}^2}$. This will be done by using the equality

 $\arctan 1 = \arctan \frac{1}{2} + \arctan \frac{1}{3}$

and proving that $\arctan \frac{1}{m} \in \mathbb{R}_{\mathcal{M}^2}$ for any natural number m, greater than 1. Let $m \in \mathbb{N}$ and m > 1. Then we can apply the previous lemma to the expansion

 $\arctan \frac{1}{m} = \sum_{i=0}^{\infty} \theta(i),$

where $\theta(i) = \frac{(-1)^i}{(2i+1)m^{2i+1}}$. The assumptions of the lemma are satisfied thanks to the inequalities

 $\frac{(i+1) \mod 2 - i \mod 2}{\min((2i+1)(m+2)^{2i+1}, n+1)} - \theta(i) \left| < \frac{1}{n+1} \right|$ $\left| \sum_{i > \log_2(y+1)} \theta(i) \right| < \frac{1}{2(y+1)^2}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

\mathcal{M}^2 -computability of π

Since $\pi = 4 \arctan 1$, it is sufficient to prove that $\arctan 1 \in \mathbb{R}_{\mathcal{M}^2}$. This will be done by using the equality

$$\arctan 1 = \arctan \frac{1}{2} + \arctan \frac{1}{3}$$

and proving that $\arctan \frac{1}{m} \in \mathbb{R}_{\mathcal{M}^2}$ for any natural number m, greater than 1. Let $m \in \mathbb{N}$ and m > 1. Then we can apply the previous lemma to the expansion

$$\arctan \frac{1}{m} = \sum_{i=0}^{\infty} \theta(i),$$

where $\theta(i) = \frac{(-1)^i}{(2i+1)m^{2i+1}}$. The assumptions of the lemma are satisfied thanks to the inequalities

$$\left|\frac{(i+1) \mod 2 - i \mod 2}{\min((2i+1)(m+2)^{2i+1}, n+1)} - \theta(i)\right| < \frac{1}{n+1}$$
$$\left|\sum_{i>\log_2(y+1)} \theta(i)\right| < \frac{1}{2(y+1)^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- **Theorem.** Let $\chi, \psi, \varphi : \mathbb{N}^{l+1} \to \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^2$, φ has a Δ_0 definable graph, and a real number $\rho > 1$ exists such that $\varphi(\overline{x}, i) \ge \rho^i$ for all $\overline{x} \in \mathbb{N}^l, i \in \mathbb{N}$. Let $\theta : \mathbb{N}^{l+1} \to \mathbb{R}$ be defined by $\theta(\overline{x}, i) = (-1)^{\chi(\overline{x}, i)} \psi(\overline{x}, i) / \varphi(\overline{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\overline{x}, i)$ is convergent, and its sum is a \mathcal{M}^2 -computable function of \overline{x} .
- *Proof.* The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^2 -computable. Now let $p: \mathbb{N}^{l+1} \to \mathbb{N}$ be defined by $p(\overline{x}, n) = (a(b+1)(n+1))^c 1$, where a, b, c are positive integers such that $1 + 1/b < \rho$, $(1+1/b)^c \ge 2$, and $|\theta(\overline{x}, i)| \le a(1+1/b)^{-i}$ for all $i \in \mathbb{N}$. Clearly $p \in \mathcal{M}^2$. Let $\overline{x} \in \mathbb{N}^l, n \in \mathbb{N}, y = p(\overline{x}, n), m = \lfloor \log_2(y+1) \rfloor + 1$. Then $m > c \log_2(a(b+1)(n+1))$, hence

$$\begin{vmatrix} \sum_{i>\log_2(y+1)} \theta(\overline{x},i) \\ = \left| \sum_{i=m}^{\infty} \theta(\overline{x},i) \right| \le \sum_{i=m}^{\infty} a(1+1/b)^{-i} = a(1+1/b)^{-m}(b+1) < a((1+1/b)^c)^{-\log_2(a(b+1)(n+1))}(b+1) \le a(a(b+1)(n+1))^{-1}(b+1) = \frac{1}{n+1}.$$

- **Theorem.** Let $\chi, \psi, \varphi : \mathbb{N}^{l+1} \to \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^2$, φ has a Δ_0 definable graph, and a real number $\rho > 1$ exists such that $\varphi(\overline{x}, i) \ge \rho^i$ for all $\overline{x} \in \mathbb{N}^l, i \in \mathbb{N}$. Let $\theta : \mathbb{N}^{l+1} \to \mathbb{R}$ be defined by $\theta(\overline{x}, i) = (-1)^{\chi(\overline{x}, i)} \psi(\overline{x}, i) / \varphi(\overline{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\overline{x}, i)$ is convergent, and its sum is a \mathcal{M}^2 -computable function of \overline{x} .
- **Proof.** The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^2 -computable. Now let $p: \mathbb{N}^{l+1} \to \mathbb{N}$ be defined by $p(\overline{x}, n) = (a(b+1)(n+1))^c 1$, where a, b, c are positive integers such that $1 + 1/b < \rho$, $(1+1/b)^c \ge 2$, and $|\theta(\overline{x}, i)| \le a(1+1/b)^{-i}$ for all $i \in \mathbb{N}$. Clearly $p \in \mathcal{M}^2$. Let $\overline{x} \in \mathbb{N}^l, n \in \mathbb{N}, y = p(\overline{x}, n), m = \lfloor \log_2(y+1) \rfloor + 1$. Then $m > c \log_2(a(b+1)(n+1))$, hence

$$\begin{vmatrix} \sum_{i>\log_2(y+1)} \theta(\overline{x},i) \\ = \left| \sum_{i=m}^{\infty} \theta(\overline{x},i) \right| \le \sum_{i=m}^{\infty} a(1+1/b)^{-i} = a(1+1/b)^{-m}(b+1) < a((1+1/b)^c)^{-\log_2(a(b+1)(n+1))}(b+1) \le a(a(b+1)(n+1))^{-1}(b+1) = \frac{1}{n+1}.$$

- **Theorem.** Let $\chi, \psi, \varphi : \mathbb{N}^{l+1} \to \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^2$, φ has a Δ_0 definable graph, and a real number $\rho > 1$ exists such that $\varphi(\overline{x}, i) \ge \rho^i$ for all $\overline{x} \in \mathbb{N}^l, i \in \mathbb{N}$. Let $\theta : \mathbb{N}^{l+1} \to \mathbb{R}$ be defined by $\theta(\overline{x}, i) = (-1)^{\chi(\overline{x}, i)} \psi(\overline{x}, i) / \varphi(\overline{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\overline{x}, i)$ is convergent, and its sum is a \mathcal{M}^2 -computable function of \overline{x} .
- *Proof.* The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^2 -computable. Now let $p: \mathbb{N}^{l+1} \to \mathbb{N}$ be defined by $p(\overline{x}, n) = (a(b+1)(n+1))^c 1$, where a, b, c are positive integers such that $1 + 1/b < \rho$, $(1+1/b)^c \ge 2$, and $|\theta(\overline{x}, i)| \le a(1+1/b)^{-i}$ for all $i \in \mathbb{N}$. Clearly $p \in \mathcal{M}^2$. Let $\overline{x} \in \mathbb{N}^l$, $n \in \mathbb{N}$, $y = p(\overline{x}, n)$, $m = \lfloor \log_2(y+1) \rfloor + 1$. Then $m > c \log_2(a(b+1)(n+1))$, hence

$$\begin{vmatrix} \sum_{i>\log_2(y+1)} \theta(\overline{x},i) \\ = \left| \sum_{i=m}^{\infty} \theta(\overline{x},i) \right| \le \sum_{i=m}^{\infty} a(1+1/b)^{-i} = a(1+1/b)^{-m}(b+1) < a((1+1/b)^c)^{-\log_2(a(b+1)(n+1))}(b+1) \le a(a(b+1)(n+1))^{-1}(b+1) = \frac{1}{n+1}.$$

- **Theorem.** Let $\chi, \psi, \varphi : \mathbb{N}^{l+1} \to \mathbb{N}$, where $\chi, \psi \in \mathcal{M}^2$, φ has a Δ_0 definable graph, and a real number $\rho > 1$ exists such that $\varphi(\overline{x}, i) \ge \rho^i$ for all $\overline{x} \in \mathbb{N}^l, i \in \mathbb{N}$. Let $\theta : \mathbb{N}^{l+1} \to \mathbb{R}$ be defined by $\theta(\overline{x}, i) = (-1)^{\chi(\overline{x}, i)} \psi(\overline{x}, i) / \varphi(\overline{x}, i)$, Then the series $\sum_{i=0}^{\infty} \theta(\overline{x}, i)$ is convergent, and its sum is a \mathcal{M}^2 -computable function of \overline{x} .
- *Proof.* The convergence is clear since ψ is bounded by some polynomial, and it is easy to see that θ is \mathcal{M}^2 -computable. Now let $p: \mathbb{N}^{l+1} \to \mathbb{N}$ be defined by $p(\overline{x}, n) = (a(b+1)(n+1))^c 1$, where a, b, c are positive integers such that $1 + 1/b < \rho$, $(1+1/b)^c \ge 2$, and $|\theta(\overline{x}, i)| \le a(1+1/b)^{-i}$ for all $i \in \mathbb{N}$. Clearly $p \in \mathcal{M}^2$. Let $\overline{x} \in \mathbb{N}^l$, $n \in \mathbb{N}$, $y = p(\overline{x}, n)$, $m = \lfloor \log_2(y+1) \rfloor + 1$. Then $m > c \log_2(a(b+1)(n+1))$, hence

$$\left|\sum_{i>\log_2(y+1)} \theta(\overline{x},i)\right| = \left|\sum_{i=m}^{\infty} \theta(\overline{x},i)\right| \le \sum_{i=m}^{\infty} a(1+1/b)^{-i} = a(1+1/b)^{-m}(b+1) < a((1+1/b)^c)^{-\log_2(a(b+1)(n+1))}(b+1) \le a(a(b+1)(n+1))^{-1}(b+1) = \frac{1}{n+1}.$$

Some other \mathcal{M}^2 -computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009) proofs of the \mathcal{M}^2 -computability of the following constants were also given (the corresponding expansions were used in the proofs):

• The Erdös-Borwein Constant

$$E = \sum_{i=1}^{\infty} \frac{1}{2^i - 1}$$

• The logarithm of the Golden Mean

$$2(\ln \varphi)^{2} = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i^{2} \binom{2i}{i}}$$

• The Paper Folding Constant

$$\sigma = \sum_{i=0}^{\infty} 2^{-2^{i}} \left(1 - 2^{-2^{i+2}} \right)^{-1}$$

<ロト <四ト <注入 <注下 <注下 <

Some other \mathcal{M}^2 -computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009) proofs of the \mathcal{M}^2 -computability of the following constants were also given (the corresponding expansions were used in the proofs):

• The Erdös-Borwein Constant

$$E = \sum_{i=1}^{\infty} \frac{1}{2^i - 1}$$

• The logarithm of the Golden Mean

$$2(\ln \varphi)^{2} = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i^{2} \binom{2i}{i}}$$

• The Paper Folding Constant

$$\sigma = \sum_{i=0}^{\infty} 2^{-2^{i}} \left(1 - 2^{-2^{i+2}} \right)^{-1}$$

<ロト <四ト <注入 <注下 <注下 <

Some other \mathcal{M}^2 -computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009) proofs of the \mathcal{M}^2 -computability of the following constants were also given (the corresponding expansions were used in the proofs):

• The Erdös-Borwein Constant

$$E = \sum_{i=1}^{\infty} \frac{1}{2^i - 1}$$

• The logarithm of the Golden Mean

$$2(\ln \varphi)^{2} = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i^{2} \binom{2i}{i}}$$

• The Paper Folding Constant

$$\sigma = \sum_{i=0}^{\infty} 2^{-2^{i}} \left(1 - 2^{-2^{i+2}} \right)^{-1}$$

(日) (國) (필) (필) (필) 표

• **Theorem.** For any $n \in \mathbb{N} \setminus \{0\}$, the following equality holds:

$$n = 2^{\lfloor \log_2 n \rfloor} \prod_{i < \lfloor \log_2 n \rfloor} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - \lfloor n/2^i \rfloor \mod 2}$$

• **Example.** $102 = 2^6 \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.

• *Proof.* Let $n \in \mathbb{N} \setminus \{0\}$, and let us set $m = \lfloor \log_2 n \rfloor$, $a_i = \lfloor n/2^i \rfloor \mod 2$, i = 0, 1, 2, ... Since $\lfloor n/2^i \rfloor = 2 \lfloor n/2^{i+1} \rfloor + a_i$ for any $i \in \mathbb{N}$, $\lfloor n/2^0 \rfloor = n$, $\lfloor n/2^m \rfloor = 1$, and $\lfloor n/2^{i+1} \rfloor \ge 1$ for any i < m, we have

$$n = \prod_{i < m} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^{i+1} \rfloor} = 2^m \prod_{i < m} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - a_i}$$

$$\ln n = \lfloor \log_2 n \rfloor \ln 2 + \sum_{i < \lfloor \log_2 n \rfloor} \left(\lfloor n/2^i \rfloor \mod 2 \right) \ln \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - 1}.$$

• **Theorem.** For any $n \in \mathbb{N} \setminus \{0\}$, the following equality holds:

$$n = 2^{\lfloor \log_2 n \rfloor} \prod_{i < \lfloor \log_2 n \rfloor} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - \lfloor n/2^i \rfloor \mod 2}$$

- **Example.** $102 = 2^6 \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.
- *Proof.* Let $n \in \mathbb{N} \setminus \{0\}$, and let us set $m = \lfloor \log_2 n \rfloor$, $a_i = \lfloor n/2^i \rfloor \mod 2, i = 0, 1, 2, \dots$ Since $\lfloor n/2^i \rfloor = 2 \lfloor n/2^{i+1} \rfloor + a_i$ for any $i \in \mathbb{N}$, $\lfloor n/2^0 \rfloor = n$, $\lfloor n/2^m \rfloor = 1$, and $\lfloor n/2^{i+1} \rfloor \ge 1$ for any i < m, we have

$$n = \prod_{i < m} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^{i+1} \rfloor} = 2^m \prod_{i < m} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - a_i}$$

$$\ln n = \lfloor \log_2 n \rfloor \ln 2 + \sum_{i < \lfloor \log_2 n \rfloor} \left(\lfloor n/2^i \rfloor \mod 2 \right) \ln \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - 1}.$$

• **Theorem.** For any $n \in \mathbb{N} \setminus \{0\}$, the following equality holds:

$$n = 2^{\lfloor \log_2 n \rfloor} \prod_{i < \lfloor \log_2 n \rfloor} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - \lfloor n/2^i \rfloor \mod 2}$$

- **Example.** $102 = 2^6 \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.
- *Proof.* Let $n \in \mathbb{N} \setminus \{0\}$, and let us set $m = \lfloor \log_2 n \rfloor$, $a_i = \lfloor n/2^i \rfloor \mod 2$, i = 0, 1, 2, ... Since $\lfloor n/2^i \rfloor = 2 \lfloor n/2^{i+1} \rfloor + a_i$ for any $i \in \mathbb{N}$, $\lfloor n/2^0 \rfloor = n$, $\lfloor n/2^m \rfloor = 1$, and $\lfloor n/2^{i+1} \rfloor \ge 1$ for any i < m, we have

$$n = \prod_{i < m} \frac{\left\lfloor n/2^i \right\rfloor}{\left\lfloor n/2^{i+1} \right\rfloor} = 2^m \prod_{i < m} \frac{\left\lfloor n/2^i \right\rfloor}{\left\lfloor n/2^i \right\rfloor - a_i}$$

$$\ln n = \lfloor \log_2 n \rfloor \ln 2 + \sum_{i < \lfloor \log_2 n \rfloor} \left(\lfloor n/2^i \rfloor \mod 2 \right) \ln \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - 1}.$$

• **Theorem.** For any $n \in \mathbb{N} \setminus \{0\}$, the following equality holds:

$$n = 2^{\lfloor \log_2 n \rfloor} \prod_{i < \lfloor \log_2 n \rfloor} \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - \lfloor n/2^i \rfloor \mod 2}$$

- **Example.** $102 = 2^6 \cdot \frac{51}{50} \cdot \frac{25}{24} \cdot \frac{3}{2}$.
- *Proof.* Let $n \in \mathbb{N} \setminus \{0\}$, and let us set $m = \lfloor \log_2 n \rfloor$, $a_i = \lfloor n/2^i \rfloor \mod 2$, i = 0, 1, 2, ... Since $\lfloor n/2^i \rfloor = 2 \lfloor n/2^{i+1} \rfloor + a_i$ for any $i \in \mathbb{N}$, $\lfloor n/2^0 \rfloor = n$, $\lfloor n/2^m \rfloor = 1$, and $\lfloor n/2^{i+1} \rfloor \ge 1$ for any i < m, we have

$$n = \prod_{i < m} \frac{\left\lfloor n/2^i \right\rfloor}{\left\lfloor n/2^{i+1} \right\rfloor} = 2^m \prod_{i < m} \frac{\left\lfloor n/2^i \right\rfloor}{\left\lfloor n/2^i \right\rfloor - a_i}$$

$$\ln n = \lfloor \log_2 n \rfloor \ln 2 + \sum_{i < \lfloor \log_2 n \rfloor} \left(\lfloor n/2^i \rfloor \mod 2 \right) \ln \frac{\lfloor n/2^i \rfloor}{\lfloor n/2^i \rfloor - 1}.$$

\mathcal{M}^2 -computability of the logarithmic function on the positive integers

• **Theorem.** The function $\Lambda : \mathbb{N} \to \mathbb{R}$ defined by $\Lambda(t) = \ln(t+1)$ is \mathcal{M}^2 -computable.

Proof. By the corollary in the previous frame,

 $\Lambda(t) = \lfloor \log_2(t+1) \rfloor \Phi(0) + \sum_{i \le \log_2(t+1)} \Psi(\lfloor (t+1)/2^i \rfloor \div 2),$

where

$$\Phi(x) = \ln \frac{x+2}{x+1} = 2 \sum_{i=0}^{\infty} \frac{1}{(2i+1)(2x+3)^{2i+1}},$$

$$\Psi(x) = (x \mod 2)\Phi(x).$$

• **Corollary.** There exist three-argument functions $F, G \in \mathcal{M}^2$ such that

$$\left|\frac{F(p,q,n) - G(p,q,n)}{n+1} - \ln \frac{p+1}{q+1}\right| \le \frac{1}{n+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for all p, q, n in \mathbb{N} .

\mathcal{M}^2 -computability of the logarithmic function on the positive integers

- **Theorem.** The function $\Lambda : \mathbb{N} \to \mathbb{R}$ defined by $\Lambda(t) = \ln(t+1)$ is \mathcal{M}^2 -computable.
- Proof. By the corollary in the previous frame,

$$\Lambda(t) = \lfloor \log_2(t+1) \rfloor \Phi(0) + \sum_{i \le \log_2(t+1)} \Psi\left(\lfloor (t+1)/2^i \rfloor \div 2 \right),$$

where

$$\Phi(x) = \ln \frac{x+2}{x+1} = 2 \sum_{i=0}^{\infty} \frac{1}{(2i+1)(2x+3)^{2i+1}},$$

$$\Psi(x) = (x \mod 2)\Phi(x).$$

• **Corollary.** There exist three-argument functions $F, G \in M^2$ such that

$$\left|\frac{F(p,q,n) - G(p,q,n)}{n+1} - \ln \frac{p+1}{q+1}\right| \le \frac{1}{n+1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □

for all p, q, n in \mathbb{N} .

\mathcal{M}^2 -computability of the logarithmic function on the positive integers

- **Theorem.** The function $\Lambda : \mathbb{N} \to \mathbb{R}$ defined by $\Lambda(t) = \ln(t+1)$ is \mathcal{M}^2 -computable.
- Proof. By the corollary in the previous frame,

 $\Lambda(t) = \lfloor \log_2(t+1) \rfloor \Phi(0) + \sum_{i \le \log_2(t+1)} \Psi\left(\lfloor (t+1)/2^i \rfloor \div 2 \right),$

where

$$\Phi(x) = \ln \frac{x+2}{x+1} = 2 \sum_{i=0}^{\infty} \frac{1}{(2i+1)(2x+3)^{2i+1}},$$

$$\Psi(x) = (x \mod 2)\Phi(x).$$

• **Corollary.** There exist three-argument functions $F, G \in \mathcal{M}^2$ such that

$$\left|\frac{F(p,q,n) - G(p,q,n)}{n+1} - \ln\frac{p+1}{q+1}\right| \le \frac{1}{n+1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

for all p, q, n in \mathbb{N} .

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed under substitution. Then ln ξ ∈ ℝ_F for any positive ξ ∈ ℝ_F.
- *Proof.* Let $\xi > 0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence x_0, x_1, x_2, \ldots satisfies $|x_n \xi| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. Let $x'_n = x_{(k+1)n+k}$, where k is a natural number such that $\frac{3}{k+1} \le \xi$. Then x'_0, x'_1, x'_2, \ldots is again an \mathcal{F} -sequence, and, for any $n \in \mathbb{N}$, $|x'_n \xi| \le ((k+1)(n+1))^{-1} \le \frac{1}{k+1}$. Thus $x'_n \ge \frac{2}{k+1}$, and hence

$$\left|\ln x'_n - \ln \xi\right| < \frac{k+1}{2} \left((k+1)(n+1) \right)^{-1} = \frac{1}{2n+2}.$$

Functions $P, Q \in \mathcal{F}$ can be found such that $x'_n = \frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set

f(n) = F(P(n), Q(n), 2n+1), g(n) = G(P(n), Q(n), 2n+1),

$$\left|\frac{f(n) - g(n)}{2n + 2} - \ln \xi\right| \le \left|\frac{f(n) - g(n)}{2n + 2} - \ln x'_n\right| + \left|\ln x'_n - \ln \xi\right| < \frac{1}{n + 1}.$$

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed under substitution. Then ln ξ ∈ ℝ_F for any positive ξ ∈ ℝ_F.
- *Proof.* Let $\xi > 0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence x_0, x_1, x_2, \ldots satisfies $|x_n \xi| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. Let $x'_n = x_{(k+1)n+k}$, where k is a natural number such that $\frac{3}{k+1} \le \xi$. Then x'_0, x'_1, x'_2, \ldots is again an \mathcal{F} -sequence, and, for any $n \in \mathbb{N}$, $|x'_n \xi| \le ((k+1)(n+1))^{-1} \le \frac{1}{k+1}$. Thus $x'_n \ge \frac{2}{k+1}$, and hence

$$\left|\ln x'_n - \ln \xi\right| < \frac{k+1}{2} ((k+1)(n+1))^{-1} = \frac{1}{2n+2}.$$

Functions $P, Q \in \mathcal{F}$ can be found such that $x'_n = \frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set

f(n) = F(P(n), Q(n), 2n+1), g(n) = G(P(n), Q(n), 2n+1),

$$\left|\frac{f(n) - g(n)}{2n + 2} - \ln \xi\right| \le \left|\frac{f(n) - g(n)}{2n + 2} - \ln x'_n\right| + \left|\ln x'_n - \ln \xi\right| < \frac{1}{n + 1}.$$

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed under substitution. Then ln ξ ∈ ℝ_F for any positive ξ ∈ ℝ_F.
- *Proof.* Let $\xi > 0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence x_0, x_1, x_2, \ldots satisfies $|x_n \xi| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. Let $x'_n = x_{(k+1)n+k}$, where k is a natural number such that $\frac{3}{k+1} \le \xi$. Then x'_0, x'_1, x'_2, \ldots is again an \mathcal{F} -sequence, and, for any $n \in \mathbb{N}$, $|x'_n \xi| \le ((k+1)(n+1))^{-1} \le \frac{1}{k+1}$. Thus $x'_n \ge \frac{2}{k+1}$, and hence

$$\left|\ln x'_n - \ln \xi\right| < \frac{k+1}{2}((k+1)(n+1))^{-1} = \frac{1}{2n+2}.$$

Functions $P, Q \in \mathcal{F}$ can be found such that $x'_n = \frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set

f(n) = F(P(n), Q(n), 2n+1), g(n) = G(P(n), Q(n), 2n+1),

$$\left|\frac{f(n) - g(n)}{2n + 2} - \ln \xi\right| \le \left|\frac{f(n) - g(n)}{2n + 2} - \ln x'_n\right| + \left|\ln x'_n - \ln \xi\right| < \frac{1}{n + 1}.$$

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed under substitution. Then ln ξ ∈ ℝ_F for any positive ξ ∈ ℝ_F.
- *Proof.* Let $\xi > 0$ and $\xi \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence x_0, x_1, x_2, \ldots satisfies $|x_n \xi| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. Let $x'_n = x_{(k+1)n+k}$, where k is a natural number such that $\frac{3}{k+1} \le \xi$. Then x'_0, x'_1, x'_2, \ldots is again an \mathcal{F} -sequence, and, for any $n \in \mathbb{N}$, $|x'_n \xi| \le ((k+1)(n+1))^{-1} \le \frac{1}{k+1}$. Thus $x'_n \ge \frac{2}{k+1}$, and hence

$$\left|\ln x'_n - \ln \xi\right| < \frac{k+1}{2}((k+1)(n+1))^{-1} = \frac{1}{2n+2}.$$

Functions $P, Q \in \mathcal{F}$ can be found such that $x'_n = \frac{P(n)+1}{Q(n)+1}$ for all $n \in \mathbb{N}$. If F and G are as in the last corollary, and we set

f(n) = F(P(n), Q(n), 2n+1), g(n) = G(P(n), Q(n), 2n+1),

$$\left|\frac{f(n) - g(n)}{2n + 2} - \ln \xi\right| \le \left|\frac{f(n) - g(n)}{2n + 2} - \ln x'_n\right| + \left|\ln x'_n - \ln \xi\right| < \frac{1}{n + 1}.$$

The exponential function preserves \mathcal{M}^{2} -computability

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed both under substitution and under
 bounded least number operator. Then e^η ∈ ℝ_F for any η ∈ ℝ_F.
- *Proof.* Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence y_0, y_1, y_2, \ldots satisfies $|y_n - \eta| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n,i} = \frac{i+1}{n+1}$. Let $a \in \mathbb{N}$, $a \ge e^{\eta}$. We set further

$$y_{n,i} = \frac{F(i, n, \tilde{n}) - G(i, n, \tilde{n})}{\tilde{n} + 1}$$

with F, G as in the last corollary and $\tilde{n} = 4a(n+1) - 1$, hence $|y_{n,i} - \ln x_{n,i}| \le \frac{1}{4a(n+1)}$. Finally, by setting

$$i_n = \min\left\{ i \mid y_{n,i} \ge y_{\bar{n}} + \frac{1}{2a(n+1)} \lor x_{n,i} = a \right\}, \ x_n = x_{n,i_n} - \frac{1}{n+1}$$

we get an \mathcal{F} -sequence x_0, x_1, x_2, \ldots , such that $0 \le x_n < x_{n,i_n} \le a$ for all $n \in \mathbb{N}$. We will show that $|x_n - e^{\eta}| \le (n+1)^{-1}$ for any $n \in \mathbb{N}$.

The exponential function preserves \mathcal{M}^2 -computability

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed both under substitution and under
 bounded least number operator. Then e^η ∈ ℝ_F for any η ∈ ℝ_F.
- *Proof.* Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence y_0, y_1, y_2, \ldots satisfies $|y_n - \eta| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n,i} = \frac{i+1}{n+1}$. Let $a \in \mathbb{N}$, $a \ge e^{\eta}$. We set further

$$y_{n,i} = \frac{F(i, n, \tilde{n}) - G(i, n, \tilde{n})}{\tilde{n} + 1}$$

with F, G as in the last corollary and $\tilde{n} = 4a(n+1) - 1$, hence $|y_{n,i} - \ln x_{n,i}| \le \frac{1}{4a(n+1)}$. Finally, by setting

$$i_n = \min\left\{ i \mid y_{n,i} \ge y_{\bar{n}} + \frac{1}{2a(n+1)} \lor x_{n,i} = a \right\}, \ x_n = x_{n,i_n} - \frac{1}{n+1}$$

we get an \mathcal{F} -sequence x_0, x_1, x_2, \ldots , such that $0 \le x_n < x_{n,i_n} \le a$ for all $n \in \mathbb{N}$. We will show that $|x_n - e^{\eta}| \le (n+1)^{-1}$ for any $n \in \mathbb{N}$.

The exponential function preserves \mathcal{M}^2 -computability

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed both under substitution and under
 bounded least number operator. Then e^η ∈ ℝ_F for any η ∈ ℝ_F.
- *Proof.* Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence y_0, y_1, y_2, \ldots satisfies $|y_n - \eta| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n,i} = \frac{i+1}{n+1}$. Let $a \in \mathbb{N}$, $a \ge e^{\eta}$. We set further

$$y_{n,i} = \frac{F(i, n, \tilde{n}) - G(i, n, \tilde{n})}{\tilde{n} + 1}$$

with F, G as in the last corollary and $\tilde{n} = 4a(n+1) - 1$, hence $|y_{n,i} - \ln x_{n,i}| \le \frac{1}{4a(n+1)}$. Finally, by setting

$$i_n = \min\left\{ i \mid y_{n,i} \ge y_{\bar{n}} + \frac{1}{2a(n+1)} \lor x_{n,i} = a \right\}, \ x_n = x_{n,i_n} - \frac{1}{n+1}$$

we get an \mathcal{F} -sequence x_0, x_1, x_2, \ldots , such that $0 \le x_n < x_{n,i_n} \le a$ for all $n \in \mathbb{N}$. We will show that $|x_n - e^{\eta}| \le (n+1)^{-1}$ for any $n \in \mathbb{N}$.

The exponential function preserves \mathcal{M}^{2} -computability

- Theorem. Let *F* be a class of total functions in N such that
 F ⊇ *M*² and *F* is closed both under substitution and under
 bounded least number operator. Then e^η ∈ ℝ_F for any η ∈ ℝ_F.
- *Proof.* Let $\eta \in \mathbb{R}_{\mathcal{F}}$. Then some \mathcal{F} -sequence y_0, y_1, y_2, \ldots satisfies $|y_n - \eta| \le (n+1)^{-1}$ for all $n \in \mathbb{N}$. For any $n, i \in \mathbb{N}$, let $x_{n,i} = \frac{i+1}{n+1}$. Let $a \in \mathbb{N}$, $a \ge e^{\eta}$. We set further

$$y_{n,i} = \frac{F(i, n, \tilde{n}) - G(i, n, \tilde{n})}{\tilde{n} + 1}$$

with F, G as in the last corollary and $\tilde{n} = 4a(n+1) - 1$, hence $|y_{n,i} - \ln x_{n,i}| \le \frac{1}{4a(n+1)}$. Finally, by setting

$$i_n = \min\left\{ i \mid y_{n,i} \ge y_{\tilde{n}} + \frac{1}{2a(n+1)} \lor x_{n,i} = a \right\}, \ x_n = x_{n,i_n} - \frac{1}{n+1}$$

we get an \mathcal{F} -sequence $x_0, x_1.x_2, \ldots$, such that $0 \le x_n < x_{n,i_n} \le a$ for all $n \in \mathbb{N}$. We will show that $|x_n - e^{\eta}| \le (n+1)^{-1}$ for any $n \in \mathbb{N}$.

We start with proving that, for any $n \in \mathbb{N}$, we have $x_n + (n+1)^{-1} \ge e^{\eta}$, i.e. $x_{n,i_n} \ge e^{\eta}$. This is clear in the case of $x_{n,i_n} = a$. Consider now an $n \in \mathbb{N}$ such that $x_{n,i_n} \ne a$. By the definition of i_n , the inequality $y_{n,i_n} \ge y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Then $\ln x_{n,i_n} \ge y_{n,i_n} - \frac{1}{4a(n+1)} \ge y_{\tilde{n}} + \frac{1}{4a(n+1)} \ge \eta$, hence $x_{n,i_n} \ge e^{\eta}$.

It is sufficient now to prove that $e^{\eta} \ge x_n - (n+1)^{-1}$ for any $n \in \mathbb{N}$. This inequality clearly holds if $i_n \le 1$, since then $x_{n,i_n} \le \frac{2}{n+1}$, hence $x_n - (n+1)^{-1} \le 0 < e^{\eta}$.

Suppose now that $i_n > 1$. Then, again by the definition of i_n , the inequality $y_{n,i_n-1} < y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Therefore $\ln x_{n,i_n-1} \le y_{n,i_n-1} + \frac{1}{4a(n+1)} < y_{\tilde{n}} + \frac{3}{4a(n+1)} \le \eta + \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-1} - \frac{1}{a(n+1)}$. Since $x_{n,i_n-2} < x_{n,i_n-1} < a$, we have $\ln x_{n,i_n-1} - \ln x_{n,i_n-2} > \frac{1}{a}(x_{n,i_n-1} - x_{n,i_n-2}) = \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-2}$ and therefore $e^{\eta} > x_{n,i_n-2} = x_n - (n+1)^{-1}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

We start with proving that, for any $n \in \mathbb{N}$, we have $x_n + (n+1)^{-1} \ge e^{\eta}$, i.e. $x_{n,i_n} \ge e^{\eta}$. This is clear in the case of $x_{n,i_n} = a$. Consider now an $n \in \mathbb{N}$ such that $x_{n,i_n} \ne a$. By the definition of i_n , the inequality $y_{n,i_n} \ge y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Then $\ln x_{n,i_n} \ge y_{n,i_n} - \frac{1}{4a(n+1)} \ge y_{\tilde{n}} + \frac{1}{4a(n+1)} \ge \eta$, hence $x_{n,i_n} \ge e^{\eta}$.

It is sufficient now to prove that $e^{\eta} \ge x_n - (n+1)^{-1}$ for any $n \in \mathbb{N}$. This inequality clearly holds if $i_n \le 1$, since then $x_{n,i_n} \le \frac{2}{n+1}$, hence $x_n - (n+1)^{-1} \le 0 < e^{\eta}$.

Suppose now that $i_n > 1$. Then, again by the definition of i_n , the inequality $y_{n,i_n-1} < y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Therefore $\ln x_{n,i_n-1} \le y_{n,i_n-1} + \frac{1}{4a(n+1)} < y_{\tilde{n}} + \frac{3}{4a(n+1)} \le \eta + \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-1} - \frac{1}{a(n+1)}$. Since $x_{n,i_n-2} < x_{n,i_n-1} < a$, we have $\ln x_{n,i_n-1} - \ln x_{n,i_n-2} > \frac{1}{a}(x_{n,i_n-1} - x_{n,i_n-2}) = \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-2}$ and therefore $e^{\eta} > x_{n,i_n-2} = x_n - (n+1)^{-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We start with proving that, for any $n \in \mathbb{N}$, we have $x_n + (n+1)^{-1} \ge e^{\eta}$, i.e. $x_{n,i_n} \ge e^{\eta}$. This is clear in the case of $x_{n,i_n} = a$. Consider now an $n \in \mathbb{N}$ such that $x_{n,i_n} \ne a$. By the definition of i_n , the inequality $y_{n,i_n} \ge y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Then $\ln x_{n,i_n} \ge y_{n,i_n} - \frac{1}{4a(n+1)} \ge y_{\tilde{n}} + \frac{1}{4a(n+1)} \ge \eta$, hence $x_{n,i_n} \ge e^{\eta}$.

It is sufficient now to prove that $e^{\eta} \ge x_n - (n+1)^{-1}$ for any $n \in \mathbb{N}$. This inequality clearly holds if $i_n \le 1$, since then $x_{n,i_n} \le \frac{2}{n+1}$, hence $x_n - (n+1)^{-1} \le 0 < e^{\eta}$.

Suppose now that $i_n > 1$. Then, again by the definition of i_n , the inequality $y_{n,i_n-1} < y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Therefore $\ln x_{n,i_n-1} \le y_{n,i_n-1} + \frac{1}{4a(n+1)} < y_{\tilde{n}} + \frac{3}{4a(n+1)} \le \eta + \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-1} - \frac{1}{a(n+1)}$. Since $x_{n,i_n-2} < x_{n,i_n-1} < a$, we have $\ln x_{n,i_n-1} - \ln x_{n,i_n-2} > \frac{1}{a}(x_{n,i_n-1} - x_{n,i_n-2}) = \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-2}$ and therefore $e^{\eta} > x_{n,i_n-2} = x_n - (n+1)^{-1}$.

(日) (國) (필) (필) (필) 표

We start with proving that, for any $n \in \mathbb{N}$, we have $x_n + (n+1)^{-1} \ge e^{\eta}$, i.e. $x_{n,i_n} \ge e^{\eta}$. This is clear in the case of $x_{n,i_n} = a$. Consider now an $n \in \mathbb{N}$ such that $x_{n,i_n} \ne a$. By the definition of i_n , the inequality $y_{n,i_n} \ge y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Then $\ln x_{n,i_n} \ge y_{n,i_n} - \frac{1}{4a(n+1)} \ge y_{\tilde{n}} + \frac{1}{4a(n+1)} \ge \eta$, hence $x_{n,i_n} \ge e^{\eta}$.

It is sufficient now to prove that $e^{\eta} \ge x_n - (n+1)^{-1}$ for any $n \in \mathbb{N}$. This inequality clearly holds if $i_n \le 1$, since then $x_{n,i_n} \le \frac{2}{n+1}$, hence $x_n - (n+1)^{-1} \le 0 < e^{\eta}$.

Suppose now that $i_n > 1$. Then, again by the definition of i_n , the inequality $y_{n,i_n-1} < y_{\tilde{n}} + \frac{1}{2a(n+1)}$ holds. Therefore $\ln x_{n,i_n-1} \le y_{n,i_n-1} + \frac{1}{4a(n+1)} < y_{\tilde{n}} + \frac{3}{4a(n+1)} \le \eta + \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-1} - \frac{1}{a(n+1)}$. Since $x_{n,i_n-2} < x_{n,i_n-1} < a$, we have $\ln x_{n,i_n-1} - \ln x_{n,i_n-2} > \frac{1}{a}(x_{n,i_n-1} - x_{n,i_n-2}) = \frac{1}{a(n+1)}$, hence $\eta > \ln x_{n,i_n-2}$ and therefore $e^{\eta} > x_{n,i_n-2} = x_n - (n+1)^{-1}$.

A partial result concerning the sine and cosine functions

- **Theorem.** For any rational number x, the real numbers $\sin x$ and $\cos x$ are \mathcal{M}^2 -computable.
- *Proof.* It is sufficient to prove the statement of the theorem for x > 0. For any $m \in \mathbb{N} \setminus \{0\}$, the numbers $\sin \frac{1}{m}$ and $\cos \frac{1}{m}$ are \mathcal{M}^2 -computable thanks to the expansions

$$\sin\frac{1}{m} = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)!m^{2i+1}}, \quad \cos\frac{1}{m} = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i)!m^{2i}}$$

The \mathcal{M}^2 -computability of sin x and cos x for any positive rational number x follows from here by an induction making use of the equalities

$$\sin \frac{n+1}{m} = \sin \frac{n}{m} \cos \frac{1}{m} + \cos \frac{n}{m} \sin \frac{1}{m},$$
$$\cos \frac{n+1}{m} = \cos \frac{n}{m} \cos \frac{1}{m} - \sin \frac{n}{m} \sin \frac{1}{m}.$$

A partial result concerning the sine and cosine functions

- Theorem. For any rational number x, the real numbers sin x and cos x are M²-computable.
- *Proof.* It is sufficient to prove the statement of the theorem for x > 0. For any $m \in \mathbb{N} \setminus \{0\}$, the numbers $\sin \frac{1}{m}$ and $\cos \frac{1}{m}$ are \mathcal{M}^2 -computable thanks to the expansions

$$\sin\frac{1}{m} = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)!m^{2i+1}}, \quad \cos\frac{1}{m} = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i)!m^{2i}}$$

The \mathcal{M}^2 -computability of sin x and cos x for any positive rational number x follows from here by an induction making use of the equalities

$$\sin \frac{n+1}{m} = \sin \frac{n}{m} \cos \frac{1}{m} + \cos \frac{n}{m} \sin \frac{1}{m},$$
$$\cos \frac{n+1}{m} = \cos \frac{n}{m} \cos \frac{1}{m} - \sin \frac{n}{m} \sin \frac{1}{m}.$$

A partial result concerning the sine and cosine functions

- Theorem. For any rational number x, the real numbers sin x and cos x are M²-computable.
- *Proof.* It is sufficient to prove the statement of the theorem for x > 0. For any $m \in \mathbb{N} \setminus \{0\}$, the numbers $\sin \frac{1}{m}$ and $\cos \frac{1}{m}$ are \mathcal{M}^2 -computable thanks to the expansions

$$\sin\frac{1}{m} = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)!m^{2i+1}}, \quad \cos\frac{1}{m} = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i)!m^{2i}}$$

The \mathcal{M}^2 -computability of sin x and cos x for any positive rational number x follows from here by an induction making use of the equalities

$$\sin\frac{n+1}{m} = \sin\frac{n}{m}\cos\frac{1}{m} + \cos\frac{n}{m}\sin\frac{1}{m},$$
$$\cos\frac{n+1}{m} = \cos\frac{n}{m}\cos\frac{1}{m} - \sin\frac{n}{m}\sin\frac{1}{m}.$$

- **Theorem.** For any rational number x, $\arctan x \in \mathbb{R}_{M^2}$.
- *Proof.* Let A be the set of all rational numbers x such that arctan x is a sum of finitely many numbers of the form arctan $\frac{1}{m}$ with $m \in \mathbb{N} \setminus \{0, 1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \ge 0$, $y \ge 0$, the equality

 $\arctan x = \arctan y + \arctan \frac{x-y}{1+xy}$

$$\arctan \frac{p}{q} = \arctan \frac{p'}{q'} + \arctan \frac{1}{qq' + pp'}.$$

- **Theorem.** For any rational number x, $\arctan x \in \mathbb{R}_{M^2}$.
- *Proof.* Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \setminus \{0, 1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \ge 0$, $y \ge 0$, the equality

 $\arctan x = \arctan y + \arctan \frac{x - y}{1 + xy}$

$$\arctan \frac{p}{q} = \arctan \frac{p'}{q'} + \arctan \frac{1}{qq' + pp'}.$$

- **Theorem.** For any rational number x, $\arctan x \in \mathbb{R}_{M^2}$.
- *Proof.* Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \setminus \{0, 1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \ge 0$, $y \ge 0$, the equality

 $\arctan x = \arctan y + \arctan \frac{x - y}{1 + xy}$

$$\arctan \frac{p}{q} = \arctan \frac{p'}{q'} + \arctan \frac{1}{qq' + pp'},$$

- **Theorem.** For any rational number x, $\arctan x \in \mathbb{R}_{M^2}$.
- *Proof.* Let A be the set of all rational numbers x such that $\arctan x$ is a sum of finitely many numbers of the form $\arctan \frac{1}{m}$ with $m \in \mathbb{N} \setminus \{0, 1\}$. We will prove the theorem by showing that all positive rational numbers belong to A. We note that $1 \in A$, and, whenever $x \ge 0$, $y \ge 0$, the equality

$$\arctan x = \arctan y + \arctan \frac{x-y}{1+xy}$$

$$\arctan \frac{p}{q} = \arctan \frac{p'}{q'} + \arctan \frac{1}{qq' + pp'}.$$

Conclusion

The theory of \mathcal{M}^2 -computability of real numbers seems to be an interesting, challenging and exciting subject.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

References

- Berarducci, A., D'Aquino, P., Δ_0 complexity of the relation $y = \prod_{i \le n} F(i)$, Ann. Pure Appl. Logic, **75** (1995), 49–56.
- Georgiev, I., "Subrecursive Computability in Analysis", MSc Thesis, Sofia University, 2009 (in Bulgarian).
- Grzegorczyk, A., "Some Classes of Recursive Functions" Dissertationes Math. (Rozprawy Mat.), **4**, Warsaw, 1953.
- Paris, J. B., Wilkie, A. J, Woods, A. R., Provability of the pigeonhole principle and the existence of infinitely many primes, Journal of Symbolic Logic, 53 (1988), 1235–1244.
- Skordev, D., Computability of real numbers by using a given class of functions in the set of the natural numbers, Math. Log. Quart., 48 (2002), Suppl. 1, 91–106.
- Tent, K., Ziegler, M., Computable functions of reals, arXiv:0903. 1384v4 [math.LO], March 2009 (Last updated: July 24, 2009)

THANK YOU FOR YOUR ATTENTION!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで