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The classM2

Definition. The class M2 is the smallest class F of total
functions in N such that F contains the projection functions,
the constant 0, the successor function, the multiplication
function, as well as the function λxy .x � y , and F is closed
under substitution and bounded least number operator.

Remark. There are different variants of the definition of
(µi ≤ y)[f (x1, . . . , xk , i) = 0] for the case when there is no
i ≤ y with f (x1, . . . , xk , i) = 0 , namely by using 0, y or y + 1
as the corresponding value. It does not matter which of them
is accepted. The function λxy .x � y may be replaced with
λxy .∣x − y ∣.
All functions fromM2 are lower elementary in Skolem’s sense,
but it is not known whether the converse is true (it would be
true if and only ifM2 was closed under bounded summation).
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The classM2 and the ∆0 definability notion

The class M2 consists exactly of the total functions in N
which are polynomially bounded and have ∆0 definable
graphs. Hence a relation in N is ∆0 definable if and only if its
characteristic function belongs to M2.

Theorem (Paris–Wilkie–Woods, Berarducci–D’Aquino). If the
graph of a function f ∶ Nk+1 → N is ∆0 definable, then so are
the graphs of the functions

g(x1, . . . , xk , y) = ∑
i≤log2(y+1)

f (x1, . . . , xk , i),

h(x1, . . . , xk , y ) = ∏
i≤y

f (x1, . . . , xk , i).

Corollary. If f ∶ Nk+1 → N is in M2, and g ,h are as above,
then g ∈M2 and λx1 . . . xkyz .min(h(x1, . . . , xk , y), z) ∈M2.
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Computability of real numbers

Definition. A sequence r0, r1, r2, . . . of rational numbers is
called recursive if there exist recursive functions f , g and h
such that

rn =
f (n) − g(n)

h(n) + 1
, n = 0,1,2, . . .

Definition. A real number α is called computable if there
exists a recursive sequence r0, r1, r2, . . . of rational numbers
such that ∣rn − α∣ ≤ 2−n, n = 0,1,2, . . .

Remark. A definition with ∣rn − α∣ ≤ (n + 1)−1 instead of
∣rn − α∣ ≤ 2−n would be equivalent to the above one, since
2−n ≤ (n + 1)−1, and for any recursive sequence r0, r1, r2, . . . of
rational numbers the sequence r ′0, r

′

1, r
′

2, . . . , defined by
r ′n = r2n−1, is also recursive.
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F -computability of real numbers

Definition. Let F be a class of total functions in the set of
the natural numbers (for instance the class M2).

A sequence r0, r1, r2, . . . of rational numbers is called an
F-sequence if there exist functions f ,g ,h ∈ F such that

rn =
f (n) − g(n)

h(n) + 1
, n = 0,1,2, . . . .

A real number α is called F-computable if there exists an
F-sequence r0, r1, r2, . . . of rational numbers such that
∣rn − α∣ ≤ (n + 1)−1, n = 0,1,2, . . . The set of the
F-computable real numbers will be denoted by RF .

Remark. In the case of F =M2, a definition with
∣rn − α∣ ≤ 2−n instead of ∣rn − α∣ ≤ (n + 1)−1 would be not
equivalent to the above one!
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Proof of the statement in the last remark

Suppose ∣rn − α∣ ≤ 2−n, n = 0,1,2, . . . , where

rn =
f (n) − g(n)

h(n) + 1
, n = 0,1,2, . . . ,

f ,g ,h ∶ N→ N. Whenever rn ≠ rn+1, then

3 ⋅ 2−n−1 ≥ ∣rn − rn+1∣ ≥ 1

(h(n) + 1)(h(n + 1) + 1) ,

and therefore 3(h(n) + 1)(h(n + 1) + 1) ≥ 2n+1. With a function
h ∈M2, the above inequality will be violated for all sufficiently
large n, hence we will have rn = rn+1 for all such n, and α must be
a rational number. On the other hand, there are irrational numbers
(e.g.

√
2) that are M2-computable in the sense of the definition

with ∣rn − α∣ ≤ (n + 1)−1 (we have ∣rn −
√

2∣ < (n + 1)−1 with

rn = kn/(n + 1), where kn = min{k ∈ N ∣ k2
> 2(n + 1)2})
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Fields of F -computable numbers

Theorem. Let F be a class of total functions in N. Then:

If F contains the successor, projection, multiplication
functions, as well as the function λxy .∣x − y ∣, and F is closed
under substitution, then RF is a field.
If F satisfies the above assumptions, and, in addition, F is
closed under the bounded least number operator, then RF is a
real closed field.

Corollary. RM2 is a real closed field.
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M2-computability of significant concrete real numbers

It seems that many significant concrete real numbers are
M2-computable. We show, for instance, that the numbers e
and π, as well as Liouville’s transcendental number are
M2-computable (unfortunately, we do not know what is the
situation with the Euler-Mascheroni constant). The
M2-computability of e and of Liouville’s number can be shown by
usingM2-sequences consisting of appropriate partial sums of
infinite series representing these numbers.1 In the case of π,
however, we do not use anM2-sequence of partial sums, but one
consisting of appropriate approximations of them.

1The same sequences were used before in a paper of the first author for
proving that e and Liouville’s number belong to RE2 , where E2 is the second
Grzegorczyk class. The possibility to use these sequences for proving the
M2-computability of their limits was observed by the second author in June
2008.
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M2-computability of the number e

For any k ∈ N, let sk= 1 + 1/1! + 1/2! +⋯ + 1/k! . Then we have
∣sk − e ∣ < 1

k!k for k = 1,2,3, . . . Let kn= min{k ∣ k!k ≥ n + 1}, rn= skn

for any n ∈ N. Then ∣rn − e ∣ < (n + 1)−1 for all n ∈ N. We will show
that the sequence r0, r1, r2, . . . is anM2-sequence. This will be
done by using the equality rn = kn!skn/kn! and proving that the
functions λn.kn!skn and λn.kn! belong toM2. The second of them
belongs to M2, since the equality m = kn! is equivalent to

(∃k ≤ m)(m = k!&mk ≥ n + 1&m(k − 1) ≤ nk),

this condition implies m ≤ 2n + 1, and the graph of the factorial
function is ∆0 definable. The statement that λn.kn!skn ∈M2

follows from the fact that 2kn
≤ 2kn! ≤ 4n + 2, hence

kn ≤ log2(4n + 2) and therefore

kn!skn = ∑
i≤log2(4n+2)

⌊kn!/min(i !, kn! + 1)⌋.
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M2-computability of Liouville’s number

Liouville’s number L is the infinite sum 10−1!
+ 10−2! + 10−3! +⋯

Let sk= 10−1!
+ 10−2!

+ . . . + 10−k! for any k ∈ N. Then we have
∣sk − L∣ < 1

10k!k for all k ∈ N. Let kn= min{k ∣10k!k
≥ n + 1}, rn= skn

for any n ∈ N. Then ∣rn − L∣ < (n + 1)−1 for all n ∈ N. The sequence
r0, r1, r2, . . . will be shown to be an M2-sequence by proving that
the functions λn.10kn!skn and λn.10kn! belong to M2. The second
of them belongs to M2, since m = 10kn! is equivalent to

(n = 0&m = 1) ∨ (∃i , j ≤ n)(j = i !&m = 10j(i+1)&

(∃l ≤ n)(l = 10ji)& (∀l ≤ n)(l ≠ 10j(i+1)2)),

this condition implies m ≤ n2
+ 9, and the graphs of the factorial

function and of the function λx .10x are ∆0 definable. To prove
that λn.10kn!skn ∈M2, we show that kn ≤ log2(n + 2) and hence

10kn!skn = min(n,1) ∑
1≤i≤log2(n+2)

⌊10kn!/min(10i!,10kn!
+ 1)⌋.
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A partial generalization
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M2-computable real-valued function
with natural arguments

Definition. A function θ ∶ Nl → R is calledM2-computable if
there exist l + 1-argument functions f ,g ,h ∈M2 such that

∣ f (x1, . . . , xl ,n) − g(x1, . . . , xl ,n)
h(x1, . . . , xl ,n) + 1

− θ(x1, . . . , xl)∣ ≤ 1

n + 1

for all x1, . . . , xl ,n in N.

All values of anM2-computable real-valued function with
natural arguments belong to RM2 (the 0-argument
M2-computable real-valued functions can be identified with
elements of RM2). Any substitution of functions from the
class M2 into anM2-computable real-valued function with
natural arguments produces again a function of this kind.
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Grzegorczyk-type approximation

Lemma. Let θ ∶ Nl → R be anM2-computable function.
Then there exist l +1-argument functions F ,G ∈M2 such that

∣F (x1, . . . , xl ,n) −G(x1, . . . , xl ,n)
n + 1

− θ(x1, . . . , xl)∣ ≤ 1

n + 1

for all x1, . . . , xl ,n in N.

Proof. There exists a two-argument function A inM2 such

that ∣A(i , j) − i
j+1 ∣ ≤ 1

2 for all i , j ∈ N. Let f ,g ,h be such as in

the definition in the previous frame. We set

F (x ,n) = A((n + 1)(f (x ,2n + 1) � g(x ,2n + 1)),h(x ,2n + 1)),
G(x ,n) = A((n + 1)(g(x ,2n + 1) � f (x ,2n + 1)),h(x ,2n + 1)),
and we use the fact that

∣F (x ,n) −G(x ,n)
n + 1

−

f (x ,2n + 1) − g(x ,2n + 1)
h(x ,2n + 1) + 1

∣ ≤ 1

2n + 2
.
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Arithmetical operations onM2-computable
real-valued functions of natural arguments

Lemma. Let θi ∶ Nl → R, i = 1,2, be M2-computable
functions. Then so are also θ1 + θ2, θ1 − θ2 and θ1θ2.

Proof. Let F1,G1,F2,G2 ∶ Nl+1 → N belong toM2, and let

∣Fi(x ,n) −Gi(x ,n)
n + 1

− θi(x)∣ ≤ 1

n + 1
, i = 1,2,

for all x in Nl and all n in N. To prove the statement about θ1θ2
(the other cases are easier), we define k, f ,g ∶ Nl+1 → N by

k(x ,n) = (∣F1(x ,0)−G1(x ,0)∣+∣F2(x ,0)−G2(x ,0)∣+3)(n+1)−1,
f (x ,n) = F1(x , k(x ,n))F2(x , k(x ,n))+G1(x , k(x ,n))G2(x , k(x ,n)),
g(x ,n) = F1(x , k(x ,n))G2(x , k(x ,n))+G1(x , k(x ,n))F2(x , k(x ,n)).
Then k, f ,g ∈M2, and, for all x in Nl and all n in N, we have

∣ f (x ,n) − g(x ,n)
(k(x ,n) + 1)2 − θ1(x)θ2(x)∣ ≤

1

n + 1
.
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Logarithmically bounded summation

Lemma (Georgiev, 2009). Let θ ∶ Nk+1 → R be an
M2-computable function, and θΣ

∶ Nk+1 → R be defined by

θΣ(x1, . . . , xk , y) = ∑
i≤log2(y+1)

θ(x1, . . . , xk , i).

Then θΣ is also M2-computable.

Proof. Let F ,G be as in the first lemma with l = k + 1. If

hΣ(x , y ,n) = (n + 1)⌊log2(y + 1)⌋ + n,

f Σ(x , y ,n) = ∑
i≤log2(y+1)

F (x , i ,hΣ(x , y ,n)),

gΣ(x , y ,n) = ∑
i≤log2(y+1)

G(x , i ,hΣ(x , y ,n)),

then

∣ f
Σ(x , y ,n) − gΣ(x , y ,n)

hΣ(x , y ,n) + 1
− θΣ(x , y)∣ ≤ 1

n + 1
.
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M2-computability of sums of series

Lemma (Georgiev, 2009). Let θ ∶ Nk+1 → R be an
M2-computable function such that the series

∞

∑
i=0

θ(x1, . . . , xk , i)

converges for all x1, . . . , xk in N, and σ(x1, . . . , xk) be its sum.
Let there exist a k + 1-argument function p ∈M2 such that

RRRRRRRRRRRR
∑

i>log2(y+1)
θ(x1, . . . , xk , i)

RRRRRRRRRRRR
≤

1

n + 1

for any natural numbers x1, . . . , xk ,n and y = p(x1, . . . , xk ,n).
Then the function σ is also M2-computable.

Proof. By the previous lemma and the definition of
M2-computability of a real-valued function with natural
arguments.
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M2-computability of π

Since π = 4 arctan 1, it is sufficient to prove that arctan 1 ∈ RM2 .
This will be done by using the equality

arctan 1 = arctan
1

2
+ arctan

1

3
and proving that arctan 1

m ∈ RM2 for any natural number m,

greater than 1. Let m ∈ N and m > 1. Then we can apply the
previous lemma to the expansion

arctan
1

m
=

∞

∑
i=0

θ(i),

where θ(i)= (−1)i
(2i+1)m2i+1 . The assumptions of the lemma are

satisfied thanks to the inequalities

∣ (i + 1) mod 2 − i mod 2

min((2i + 1)(m + 2)2i+1,n + 1) − θ(i)∣ <
1

n + 1
,

RRRRRRRRRRRR
∑

i>log2(y+1)
θ(i)
RRRRRRRRRRRR
<

1

2(y + 1)2 .
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A generalization

Theorem. Let χ,ψ,ϕ ∶ Nl+1 → N, where χ,ψ ∈M2, ϕ has a
∆0 definable graph, and a real number ρ > 1 exists such that
ϕ(x , i) ≥ ρi for all x ∈ Nl , i ∈ N. Let θ ∶ Nl+1 → R be defined by
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Some otherM2-computable constants

In the MSc thesis of Ivan Georgiev (defended in March 2009)
proofs of the M2-computability of the following constants were
also given (the corresponding expansions were used in the proofs):

The Erdös-Borwein Constant

E =
∞

∑
i=1

1

2i
− 1

The logarithm of the Golden Mean

2(lnϕ)2 =
∞

∑
i=1

(−1)i+1
i2(2i

i
)

The Paper Folding Constant

σ =
∞

∑
i=0

2−2
i (1 − 2−2

i+2)−1
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A formula for the logarithms of the positive integers

Theorem. For any n ∈ N ∖ {0}, the following equality holds:

n = 2⌊log2 n⌋ ∏
i<⌊log2 n⌋

⌊n/2i⌋
⌊n/2i ⌋ − ⌊n/2i ⌋mod2

.

Example. 102 = 26
⋅

51
50 ⋅

25
24 ⋅

3
2 .

Proof. Let n ∈ N ∖ {0}, and let us set m= ⌊log2 n⌋,
ai= ⌊n/2i⌋mod2, i = 0,1,2, . . . Since ⌊n/2i⌋ = 2 ⌊n/2i+1⌋ + ai

for any i ∈ N, ⌊n/20⌋ = n, ⌊n/2m⌋ = 1, and ⌊n/2i+1⌋ ≥ 1 for any
i < m, we have

n =∏
i<m

⌊n/2i⌋
⌊n/2i+1⌋ = 2m∏

i<m

⌊n/2i⌋
⌊n/2i ⌋ − ai

.

Corollary. For any n ∈ N ∖ {0}, the following equality holds:

lnn = ⌊log2 n⌋ ln 2 + ∑
i<⌊log2 n⌋

(⌊n/2i⌋mod2) ln ⌊n/2i⌋
⌊n/2i ⌋ − 1

.
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M2-computability of the logarithmic function
on the positive integers

Theorem. The function Λ ∶ N→ R defined by Λ(t) = ln(t + 1)
is M2-computable.

Proof. By the corollary in the previous frame,

Λ(t) = ⌊log2(t + 1)⌋Φ(0) + ∑
i≤log2(t+1)

Ψ (⌊(t + 1)/2i⌋ � 2),

where

Φ(x) = ln
x + 2

x + 1
= 2

∞

∑
i=0

1

(2i + 1)(2x + 3)2i+1
,

Ψ(x) = (x mod 2)Φ(x).
Corollary. There exist three-argument functions F ,G ∈M2

such that

∣F (p,q,n) −G(p,q,n)
n + 1

− ln
p + 1

q + 1
∣ ≤ 1

n + 1

for all p,q,n in N.
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The logarithmic function preservesM2-computability

Theorem. Let F be a class of total functions in N such that
F ⊇M2 and F is closed under substitution. Then ln ξ ∈ RF
for any positive ξ ∈ RF .
Proof. Let ξ > 0 and ξ ∈ RF . Then some F-sequence
x0, x1, x2, . . . satisfies ∣xn − ξ∣ ≤ (n + 1)−1 for all n ∈ N. Let
x ′n= x(k+1)n+k , where k is a natural number such that 3

k+1 ≤ ξ.
Then x ′0, x

′

1, x
′

2, . . . is again an F-sequence, and, for any n ∈ N,
∣x ′n − ξ∣ ≤ ((k + 1)(n + 1))−1 ≤ 1

k+1 . Thus x ′n ≥
2

k+1 , and hence

∣ln x ′n − ln ξ∣ < k + 1

2
((k + 1)(n + 1))−1 = 1

2n + 2
.

Functions P,Q ∈ F can be found such that x ′n =
P(n)+1
Q(n)+1 for all

n ∈ N. If F and G are as in the last corollary, and we set

f (n)= F (P(n),Q(n),2n + 1), g(n)= G(P(n),Q(n),2n + 1),
then f ,g ∈ F , and, for all n ∈ N, we have

∣ f (n) − g(n)
2n + 2

− ln ξ∣ ≤ ∣ f (n) − g(n)
2n + 2

− ln x ′n∣ + ∣ln x ′n − ln ξ∣ < 1

n + 1
.
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The exponential function preservesM2-computability

Theorem. Let F be a class of total functions in N such that
F ⊇M2 and F is closed both under substitution and under
bounded least number operator. Then eη

∈ RF for any η ∈ RF .

Proof. Let η ∈ RF . Then some F-sequence y0, y1, y2, . . .
satisfies ∣yn − η∣ ≤ (n + 1)−1 for all n ∈ N. For any n, i ∈ N, let
xn,i=

i+1
n+1 . Let a ∈ N, a ≥ eη. We set further

yn,i=
F (i ,n, ñ) −G(i ,n, ñ)

ñ + 1

with F ,G as in the last corollary and ñ= 4a(n + 1) − 1, hence
∣yn,i − ln xn,i ∣ ≤ 1

4a(n+1) . Finally, by setting

in= min{ i ∣ yn,i ≥ yñ +
1

2a(n + 1) ∨ xn,i = a} , xn= xn,in −
1

n + 1

we get an F-sequence x0, x1.x2, . . ., such that 0 ≤ xn < xn,in ≤ a
for all n ∈ N. We will show that ∣xn − eη ∣ ≤ (n + 1)−1 for any n ∈ N.
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F (i ,n, ñ) −G(i ,n, ñ)
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1

4a(n+1) ≥ η, hence xn,in ≥ eη.

It is sufficient now to prove that eη
≥ xn − (n + 1)−1 for any n ∈ N.

This inequality clearly holds if in ≤ 1, since then xn,in ≤
2

n+1 , hence
xn − (n + 1)−1 ≤ 0 < eη.

Suppose now that in > 1. Then, again by the definition of in, the
inequality yn,in−1 < yñ +
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A partial result concerning the sine and cosine functions

Theorem. For any rational number x , the real numbers sin x
and cos x are M2-computable.

Proof. It is sufficient to prove the statement of the theorem
for x > 0. For any m ∈ N ∖ {0}, the numbers sin 1

m and cos 1
m

are M2-computable thanks to the expansions

sin
1

m
=

∞

∑
i=0

(−1)i
(2i + 1)!m2i+1

, cos
1

m
=

∞

∑
i=0

(−1)i
(2i)!m2i

.

The M2-computability of sin x and cos x for any positive
rational number x follows from here by an induction making
use of the equalities

sin
n + 1

m
= sin

n

m
cos

1

m
+ cos

n

m
sin

1

m
,

cos
n + 1

m
= cos

n

m
cos

1

m
− sin

n

m
sin

1

m
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A partial result concerning the arctan function

Theorem. For any rational number x , arctan x ∈ RM2 .

Proof. Let A be the set of all rational numbers x such that
arctan x is a sum of finitely many numbers of the form
arctan 1

m with m ∈ N ∖ {0,1}. We will prove the theorem by
showing that all positive rational numbers belong to A. We
note that 1 ∈ A, and, whenever x ≥ 0, y ≥ 0, the equality

arctan x = arctan y + arctan
x − y

1 + xy

holds. By using its instance with x = y + 1 we see that
N ∖ {0} ⊂ A. Now an induction on q can be used to show that
p
q ∈ A for any relatively prime p,q ∈ N∖ {0}. The case of q = 1
is already settled, and the case of p = 1 is obvious. Let p > 1
and q > 1. Then (pq′) mod q = 1 for some positive integer
q′ < q, hence pq′ = qp′ + 1 for some p′ ∈ N ∖ {0}, and the
above equality yields

arctan
p

q
= arctan

p′

q′
+ arctan

1

qq′ + pp′
.
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Conclusion

The theory ofM2-computability of real numbers seems to be an
interesting, challenging and exciting subject.
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